This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155491 #8 Apr 03 2022 08:20:51 %S A155491 1,1,1,1,12,1,1,78,78,1,1,415,1820,415,1,1,2031,27410,27410,2031,1,1, %T A155491 9534,330225,959350,330225,9534,1,1,43660,3488884,23935450,23935450, %U A155491 3488884,43660,1,1,196569,33888576,484631574,1120179060,484631574,33888576,196569,1 %N A155491 Triangle T(n, k) = binomial(n+1, k)*A142458(n+1, k+1)/(k+1), read by rows. %H A155491 G. C. Greubel, <a href="/A155491/b155491.txt">Rows n = 0..50 of the triangle, flattened</a> %F A155491 T(n, k) = binomial(n+1, k)*t(n, k, m)/(k+1), where t(n,k,m) = (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m), t(n,1,m) = t(n,n,m) = 1, and m = 3. %F A155491 From _G. C. Greubel_, Apr 01 2022: (Start) %F A155491 T(n, k) = binomial(n+1, k)*A142458(n+1, k+1)/(k+1). %F A155491 T(n, n-k) = T(n, k). (End) %e A155491 Triangle begins as: %e A155491 1; %e A155491 1, 1; %e A155491 1, 12, 1; %e A155491 1, 78, 78, 1; %e A155491 1, 415, 1820, 415, 1; %e A155491 1, 2031, 27410, 27410, 2031, 1; %e A155491 1, 9534, 330225, 959350, 330225, 9534, 1; %e A155491 1, 43660, 3488884, 23935450, 23935450, 3488884, 43660, 1; %e A155491 1, 196569, 33888576, 484631574, 1120179060, 484631574, 33888576, 196569, 1; %t A155491 t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k -(m -1))*t[n-1,k,m]]; %t A155491 T[n_, k_, m_]:= Binomial[n+1,k]*t[n+1,k+1,m]/(k+1); %t A155491 Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 01 2022 *) %o A155491 (Sage) %o A155491 @CachedFunction %o A155491 def t(n,k,m): %o A155491 if (k==1 or k==n): return 1 %o A155491 else: return (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m) %o A155491 def T(n,k,m): return binomial(n+1,k)*t(n+1,k+1,m)/(k+1) %o A155491 flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 01 2022 %Y A155491 Cf. A001263 (m=0), A155467 (m=1), this sequence (m=3), A155493 (m=4). %Y A155491 Cf. A142458. %K A155491 nonn,tabl %O A155491 0,5 %A A155491 _Roger L. Bagula_, Jan 23 2009 %E A155491 Edited by _G. C. Greubel_, Apr 01 2022