This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155497 #13 Feb 03 2025 02:23:19 %S A155497 1,1,1,1,18,1,1,90,90,1,1,280,1400,280,1,1,675,10500,10500,675,1,1, %T A155497 1386,51975,161700,51975,1386,1,1,2548,196196,1471470,1471470,196196, %U A155497 2548,1,1,4320,611520,9417408,22702680,9417408,611520,4320,1,1,6885,1652400,46781280,231567336,231567336,46781280,1652400,6885,1 %N A155497 Triangle T(n, k) = binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1), read by rows. %H A155497 G. C. Greubel, <a href="/A155497/b155497.txt">Rows n = 0..50 of the triangle, flattened</a> %F A155497 T(n, k) = binomial(n, k)*binomial(2*n, 2*k)*f(n)/(f(k)*f(n-k)), where f(n) = (n+1)!. %F A155497 T(n, k) = binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1). %F A155497 From _G. C. Greubel_, May 29 2021: (Start) %F A155497 Sum_{k=0..n} T(n, k) = Hypergeometric4F3([-n, -n, -n-1, -n-1/2], [1/2, 1, 2], 1). %F A155497 T(n, k) = binomial(n, k)*A155495(n, k)/(n-k+1). %F A155497 T(n, k) = binomial(2*n, 2*k)*A103371(n, k)/(n-k+1). (End) %e A155497 Triangle begins as: %e A155497 1; %e A155497 1, 1; %e A155497 1, 18, 1; %e A155497 1, 90, 90, 1; %e A155497 1, 280, 1400, 280, 1; %e A155497 1, 675, 10500, 10500, 675, 1; %e A155497 1, 1386, 51975, 161700, 51975, 1386, 1; %e A155497 1, 2548, 196196, 1471470, 1471470, 196196, 2548, 1; %e A155497 1, 4320, 611520, 9417408, 22702680, 9417408, 611520, 4320, 1; %e A155497 1, 6885, 1652400, 46781280, 231567336, 231567336, 46781280, 1652400, 6885, 1; %t A155497 T[n_, k_]:= Binomial[n,k]*Binomial[n+1,k+1]*Binomial[2*n,2*k]/(n-k+1); %t A155497 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, May 29 2021 *) %o A155497 (Magma) [Binomial(n, k)*Binomial(n+1, k+1)*Binomial(2*n, 2*k)/(n-k+1): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 29 2021 %o A155497 (Sage) flatten([[binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1) for k in (0..12)] for n in (0..12)]) # _G. C. Greubel_, May 29 2021 %Y A155497 Cf. A103371, A155495. %K A155497 nonn,tabl,easy %O A155497 0,5 %A A155497 _Roger L. Bagula_, Jan 23 2009 %E A155497 Edited by _G. C. Greubel_, May 29 2021