This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155516 #10 Sep 08 2022 08:45:40 %S A155516 1,1,1,1,20,1,1,105,105,1,1,336,1764,336,1,1,825,13860,13860,825,1,1, %T A155516 1716,70785,226512,70785,1716,1,1,3185,273273,2147145,2147145,273273, %U A155516 3185,1,1,5440,866320,14158144,34763300,14158144,866320,5440,1,1,8721,2372112,71954064,367479684,367479684,71954064,2372112,8721,1 %N A155516 Triangle T(n, k) = binomial(2*n, 2*k)*binomial(2*n+1, 2*k+1)/(2*n-2*k+1), read by rows. %H A155516 G. C. Greubel, <a href="/A155516/b155516.txt">Rows n = 0..50 of the triangle, flattened</a> %F A155516 T(n, k) = (2*n + 1)!!/((2*k + 1)!!*(2*(n-k) + 1)!!)*binomial(2*n, 2*k)*binomial(n, k). %F A155516 From _G. C. Greubel_, May 29 2021: (Start) %F A155516 T(n, k) = (2*n + 1)!!/((2*k + 1)!!*(2*(n-k) + 1)!!)*A155495(n, k). %F A155516 T(n, k) = binomial(2*n, 2*k)*binomial(2*n+1, 2*k+1)/(2*n-2*k+1). %F A155516 Sum_{k=0..n} T(n, k) = Hypergeometric4F3([-n,-n,-n-1/2,-n+1/2], [1/2,1,3/2], 1). (End) %e A155516 Triangle begins as: %e A155516 1; %e A155516 1, 1; %e A155516 1, 20, 1; %e A155516 1, 105, 105, 1; %e A155516 1, 336, 1764, 336, 1; %e A155516 1, 825, 13860, 13860, 825, 1; %e A155516 1, 1716, 70785, 226512, 70785, 1716, 1; %e A155516 1, 3185, 273273, 2147145, 2147145, 273273, 3185, 1; %e A155516 1, 5440, 866320, 14158144, 34763300, 14158144, 866320, 5440, 1; %e A155516 1, 8721, 2372112, 71954064, 367479684, 367479684, 71954064, 2372112, 8721, 1; %t A155516 T[n_, k_]:= Binomial[2*n, 2*k]*Binomial[2*n+1, 2*k+1]/(2*n-2*k+1); %t A155516 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, May 29 2021 *) %o A155516 (Magma) [Binomial(2*n, 2*k)*Binomial(2*n+1, 2*k+1)/(2*n-2*k+1): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 29 2021 %o A155516 (Sage) flatten([[binomial(2*n, 2*k)*binomial(2*n+1, 2*k+1)/(2*n-2*k+1) for k in (0..12)] for n in (0..12)]) # _G. C. Greubel_, May 29 2021 %Y A155516 Cf. A155495. %K A155516 nonn,tabl,easy %O A155516 0,5 %A A155516 _Roger L. Bagula_, Jan 23 2009 %E A155516 Edited by _G. C. Greubel_, May 29 2021