A155726 Production matrix for Fibonacci numbers, read by row.
0, 1, 2, -1, 1, 3, 0, -1, 1, 4, 0, 0, -1, 1, 5, 0, 0, 0, -1, 1, 6, 0, 0, 0, 0, -1, 1, 7, 0, 0, 0, 0, 0, -1, 1, 8, 0, 0, 0, 0, 0, 0, -1, 1, 9, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 0
Examples
Matrix begins 0, 1, 2, -1, 1, 3, 0, -1, 1, 4, 0, 0, -1, 1, 5, 0, 0, 0, -1, 1, 6, 0, 0, 0, 0, -1, 1, 7, 0, 0, 0, 0, 0, -1, 1, 8, 0, 0, 0, 0, 0, 0, -1, 1, 9, 0, 0, 0, 0, 0, 0, 0, -1, 1 The row augmented triangular matrix 1, 0, 1, 2, -1, 1, 3, 0, -1, 1, 4, 0, 0, -1, 1, 5, 0, 0, 0, -1, 1, 6, 0, 0, 0, 0, -1, 1, 7, 0, 0, 0, 0, 0, -1, 1, 8, 0, 0, 0, 0, 0, 0, -1, 1, 9, 0, 0, 0, 0, 0, 0, 0, -1, 1 has row sums 0^n+n. Its inverse has row sums (n+1)(2-n)/2 or A080956. This is the matrix 1, 0, 1, -2, 1, 1, -5, 1, 1, 1, -9, 1, 1, 1, 1, -14, 1, 1, 1, 1, 1, -20, 1, 1, 1, 1, 1, 1, -27, 1, 1, 1, 1, 1, 1, 1, -35, 1, 1, 1, 1, 1, 1, 1, 1 with first column (n+2)(1-n)/2.
Links
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
Comments