This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155729 #3 Mar 31 2012 20:08:03 %S A155729 1,2,1,14,2,13,121,14,6,19,1383,121,42,38,160,19108,1383,363,266,320, %T A155729 1744,19108,1383,363,266,320,1744,309708,19108,4149,2299,2240,3488, %U A155729 23184,2751027,309708,57324,26277,19360,24416,46368,364176 %N A155729 Triangle read by rows, M * Q; M = (T(n,k) = A155728(n-k+1)); Q = (A155728 * 0^(n-k)). %C A155729 Row sums = A054765 starting with offset 1: (1, 3, 19, 160, 1744,...). %C A155729 As a property of eigentriangles, sum of n-th row terms = rightmost term of next row. %C A155729 A155728 = INVERTi transform of A054765: (1, 3, 19, 160, 1744,...). %F A155729 M = an infinite lower triangular matrix with A155728 in every column: %F A155729 (1, 2, 14, 121, 1383, 19108, 309708,...). %F A155729 Q = an infinite lower triangular matrix with A054765 prefaced with a 1: %F A155729 (1, 1, 3, 19, 160, 1744,...) as the main diagonal and the rest zeros. %e A155729 First few rows of the triangle = %e A155729 1; %e A155729 2, 1; %e A155729 14, 2, 3; %e A155729 121, 14, 6, 19; %e A155729 1383, 121, 42, 38, 160; %e A155729 19108, 1383, 363, 266, 320, 1744; %e A155729 309708, 19108, 4149, 2299, 2240, 3488, 23184; %e A155729 2751027, 309708, 57324, 26277, 19360, 24416, 46368, 364176; %e A155729 ... %e A155729 Example: Row 4 = = (121, 14, 6, 19) termwise products of (121, 14, 2, 1) and (1, 1, 3, 19). %Y A155729 Cf. A054765, A155728 %K A155729 eigen,nonn,tabl %O A155729 1,2 %A A155729 Gary W. Adamson & _Alexander R. Povolotsky_, Jan 25 2009