This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155755 #9 Jun 06 2021 06:53:46 %S A155755 2,3,3,7,10,7,25,35,35,25,121,168,142,168,121,721,1064,735,735,1064, %T A155755 721,5041,8055,5399,3330,5399,8055,5041,40321,69299,49371,22449,22449, %U A155755 49371,69299,40321,362881,663740,509830,223300,109298,223300,509830,663740,362881 %N A155755 Triangle T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2), read by rows. %C A155755 This symmetric summation of the triangle A143491 is equivalent to the coefficient [x^m] (p_n(x) + x^n*p_n(1/x)) of the polynomials defined in A143491 plus their reverses. %H A155755 G. C. Greubel, <a href="/A155755/b155755.txt">Rows n = 0..50 of the triangle, flattened</a> %F A155755 T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2). %F A155755 Sum_{k=0..n} T(n, k) = (n+2)!. %e A155755 Triangle begins as: %e A155755 2; %e A155755 3, 3;, %e A155755 7, 10, 7; %e A155755 25, 35, 35, 25; %e A155755 121, 168, 142, 168, 121; %e A155755 721, 1064, 735, 735, 1064, 721; %e A155755 5041, 8055, 5399, 3330, 5399, 8055, 5041; %e A155755 40321, 69299, 49371, 22449, 22449, 49371, 69299, 40321; %e A155755 362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881; %t A155755 (* First program *) %t A155755 q[x_, n_]:= Product[x +n-i+1, {i,0,n-1}]; %t A155755 p[x_, n_]:= q[x, n] + x^n*q[1/x, n]; %t A155755 Table[CoefficientList[p[x, n], x], {n,0,12}]//Flatten (* modified by _G. C. Greubel_, Jun 06 2021 *) %t A155755 (* Second program *) %t A155755 A143491[n_, k_]:= (n-2)!*Sum[(n-k-j+1)*Abs[StirlingS1[j+k-2, k-2]]/(j+k-2)!, {j,0,n-k}]; %t A155755 A155755[n_, k_]:= A143491[n+2, k+2] + A143491[n+2, n-k+2]; %t A155755 Table[A155755[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 06 2021 *) %o A155755 (Sage) %o A155755 def A143491(n,k): return factorial(n-2)*sum( (n-k-j+1)*stirling_number1(j+k-2, k-2)/factorial(j+k-2) for j in (0..n-k) ) %o A155755 def A155755(n,k): return A143491(n+2, k+2) + A143491(n+2, n-k+2) %o A155755 flatten([[A155755(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 06 2021 %Y A155755 Cf. A143491. %K A155755 nonn,tabl %O A155755 0,1 %A A155755 _Roger L. Bagula_, Jan 26 2009