This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155761 #11 Jun 07 2021 04:38:26 %S A155761 1,0,1,2,0,1,0,4,0,1,8,0,6,0,1,0,20,0,8,0,1,40,0,36,0,10,0,1,0,112,0, %T A155761 56,0,12,0,1,224,0,224,0,80,0,14,0,1,0,672,0,384,0,108,0,16,0,1,1344, %U A155761 0,1440,0,600,0,140,0,18,0,1 %N A155761 Riordan array (c(2*x^2), x*c(2*x^2)) where c(x) is the g.f. of A000108. %C A155761 Inverse of Riordan array (1/(1+2*x^2), x/(1+2*x^2)). %H A155761 G. C. Greubel, <a href="/A155761/b155761.txt">Rows n = 0..50 of the triangle, flattened</a> %F A155761 T(n,k) = (1+(-1)^(n-k)) * ((k+1)/(n+1)) * binomial(n+1, (n-k)/2) * 2^((n-k-2)/2). %F A155761 Sum_{k=0..n} T(n, k) = A126087(n). %F A155761 T(n,k) = 2^((n-k)/2) * A053121(n,k). - _Philippe Deléham_, Feb 11 2009 %F A155761 Sum_{k=0..n} T(2*n-k, k) = A064062(n+1). - _G. C. Greubel_, Jun 06 2021 %e A155761 Triangle begins: %e A155761 1; %e A155761 0, 1; %e A155761 2, 0, 1; %e A155761 0, 4, 0, 1; %e A155761 8, 0, 6, 0, 1; %e A155761 0, 20, 0, 8, 0, 1; %e A155761 40, 0, 36, 0, 10, 0, 1; %e A155761 0, 112, 0, 56, 0, 12, 0, 1; %e A155761 224, 0, 224, 0, 80, 0, 14, 0, 1; %e A155761 Production matrix begins as: %e A155761 0, 1; %e A155761 2, 0, 1; %e A155761 0, 2, 0, 1; %e A155761 0, 0, 2, 0, 1; %e A155761 0, 0, 0, 2, 0, 1; %e A155761 0, 0, 0, 0, 2, 0, 1; %e A155761 0, 0, 0, 0, 0, 2, 0, 1; %e A155761 0, 0, 0, 0, 0, 0, 2, 0, 1; %e A155761 0, 0, 0, 0, 0, 0, 0, 2, 0, 1; %e A155761 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1; %t A155761 T[n_, k_]:= (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*Binomial[n+1, (n-k)/2]; %t A155761 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 06 2021 *) %o A155761 (Sage) %o A155761 def A155761(n,k): return (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*binomial(n+1, (n-k)/2) %o A155761 flatten([[A155761(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 06 2021 %Y A155761 Cf. A064062, A126087 (row sums). %K A155761 easy,nonn,tabl %O A155761 0,4 %A A155761 _Paul Barry_, Jan 26 2009