cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155799 Decimal expansion of the product_{q=3-almost-primes} (q^2-1)/(q^2+1).

This page as a plain text file.
%I A155799 #3 Mar 30 2012 17:39:52
%S A155799 9,2,5,8,5,7,2,7,4,7,1,2,8,9,3,1,2,7,9,9,8,8,8,2,1,3,8,2,0,7,1,5,8,4,
%T A155799 1,5,2,7,8,4,5,0,2,1,8,1,9,1,9,6,6,0,2,1,5,3,2,7,6,5,6,6,2,0,2,9,5,6,
%U A155799 7,4,4,6,8,1,0,7,1,2,4,7,5,7,0,3,9,6,4,4,8,6,6,8,9
%N A155799 Decimal expansion of the product_{q=3-almost-primes} (q^2-1)/(q^2+1).
%C A155799 The 3-almost-prime analog of A112407. Its logarithm has been computed from -2*sum_{l=1..infinity} P_3(2*(2l-1))/(2l-1) where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.
%H A155799 R. J. Mathar, <a href="http://arxiv.org/abs/0803.0900">Series of reciprocal powers of k-almost primes</a>, arXiv:0803.0900 [math.NT].
%H A155799 R. J. Mathar, <a href="http://arxiv.org/abs/0903.2514">Hardy-Littlewood constants embedded into infinite products over all positive integers</a>, arXiv:0903.2514 [math.NT], third line Table 1. [From _R. J. Mathar_, Mar 28 2009]
%F A155799 product_{n=1..infinity} (A014612(n)^2-1)/(A014612(n)^2+1).
%e A155799 0.92585727... = 63/65*143/145*323/325*399/401*364/365*...
%Y A155799 Cf. A112407.
%K A155799 cons,nonn
%O A155799 0,1
%A A155799 _R. J. Mathar_, Jan 27 2009