This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155839 #8 Sep 08 2022 08:45:41 %S A155839 1,0,1,0,0,1,0,1,0,1,0,2,3,0,1,0,4,7,6,0,1,0,8,18,16,10,0,1,0,16,45, %T A155839 51,30,15,0,1,0,32,110,152,115,50,21,0,1,0,64,264,436,396,225,77,28,0, %U A155839 1,0,128,624,1212,1300,876,399,112,36,0,1 %N A155839 A ratio of two Catalan arrays. %H A155839 G. C. Greubel, <a href="/A155839/b155839.txt">Rows n = 0..50 of the triangle, flattened</a> %F A155839 T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(j+1, n-j)*binomial(j, k)*A000108(j-k). %F A155839 Sum_{k=0..n} T(n, k) = A120010(n+1). %F A155839 Equals A033184^{-1}*A124644. %e A155839 Triangle begins %e A155839 1; %e A155839 0, 1; %e A155839 0, 0, 1; %e A155839 0, 1, 0, 1; %e A155839 0, 2, 3, 0, 1; %e A155839 0, 4, 7, 6, 0, 1; %e A155839 0, 8, 18, 16, 10, 0, 1; %e A155839 0, 16, 45, 51, 30, 15, 0, 1; %e A155839 0, 32, 110, 152, 115, 50, 21, 0, 1; %t A155839 T[n_, k_] = Sum[(-1)^j*Binomial[n-j, k]*Binomial[n-j+1, j]*CatalanNumber[n-k-j], {j, 0, n-k}]; %t A155839 Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jun 04 2021 *) %o A155839 (Magma) %o A155839 A155839:= func< n,k | (&+[(-1)^(n-j)*Binomial(j+1, n-j)*Binomial(j, k)*Catalan(j-k) : j in [k..n]]) >; %o A155839 [A155839(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 04 2021 %o A155839 (Sage) %o A155839 def A155839(n,k): return sum( (-1)^j*binomial(n-j,k)*binomial(n-j+1,j)*catalan_number(n-k-j) for j in (0..n-k)) %o A155839 flatten([[A155839(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 04 2021 %Y A155839 Cf. A000108, A033184, A120010 (row sums), A124644. %K A155839 easy,nonn,tabl %O A155839 0,12 %A A155839 _Paul Barry_, Jan 28 2009