cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155858 Diagonal sums of triangle A155856.

This page as a plain text file.
%I A155858 #10 Jun 05 2021 03:07:50
%S A155858 1,1,3,9,35,168,967,6538,50831,446919,4383861,47451921,561715093,
%T A155858 7217604520,100031995789,1487319385140,23613262336093,398673670050021,
%U A155858 7132188802005991,134766129577134553,2681929390235577831
%N A155858 Diagonal sums of triangle A155856.
%H A155858 G. C. Greubel, <a href="/A155858/b155858.txt">Table of n, a(n) for n = 0..440</a>
%F A155858 G.f.: 1/(1 -x^2 -x/(1 -x^2 -x/(1 -x^2 -2*x/(1 -x^2 -2*x/(1 -x^2 -3*x/(1 -x^2 -3*x/(1 - ... (continued fraction);
%F A155858 a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k, k)*(n-2*k)!.
%F A155858 Conjecture: a(n) -(n-1)*a(n-1) -(n-2)*a(n-2) +(n-3)*a(n-3) +(n-10)*a(n-4) -5*a(n-5) +3*a(n-6) +3*a(n-7) = 0. - _R. J. Mathar_, Feb 05 2015
%F A155858 a(n) ~ n! * (1 + 2/n + 1/n^2 - 2/(3*n^3) - 22/(3*n^4) - 491/(15*n^5) - 11467/(90*n^6) - ...). - _Vaclav Kotesovec_, Jun 05 2021
%t A155858 Table[Sum[Binomial[2*n-3*k, k]*(n-2*k)!, {k,0,Floor[n/2]}], {n,0,30}] (* _G. C. Greubel_, Jun 05 2021 *)
%o A155858 (Sage) [sum( binomial(2*n-3*k, k)*factorial(n-2*k) for k in (0..n//2) ) for n in (0..30)] # _G. C. Greubel_, Jun 05 2021
%Y A155858 Cf. A155856.
%K A155858 easy,nonn
%O A155858 0,3
%A A155858 _Paul Barry_, Jan 29 2009