cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155871 Subtraction of polynomial coefficients of MacMahon A060187 from third derivative of Pascal's triangle A155863: p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x.

This page as a plain text file.
%I A155871 #2 Mar 30 2012 17:34:33
%S A155871 1,1,-16,-110,-16,-117,-1322,-1322,-117,-512,-9703,-22288,-9703,-512,
%T A155871 -1843,-58977,-256363,-256363,-58977,-1843,-6048,-328588,-2477728,
%U A155871 -4664934,-2477728,-328588,-6048,-18953,-1751300,-21692852,-69388094
%N A155871 Subtraction of polynomial coefficients of MacMahon A060187 from third derivative of Pascal's triangle A155863: p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x.
%C A155871 Row sums are:
%C A155871 {2, -142, -2878, -42718, -634366, -10289662, -185702398, -3715637758,
%C A155871 -81748930558, -1961988796414, -51011749920766}
%F A155871 p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]]
%F A155871 - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x;
%F A155871 t(n,m)=coefficients(p(x,n))
%e A155871 {1, 1},
%e A155871 {-16, -110, -16},
%e A155871 {-117, -1322, -1322, -117},
%e A155871 {-512, -9703, -22288, -9703, -512},
%e A155871 {-1843, -58977, -256363, -256363, -58977, -1843},
%e A155871 {-6048, -328588, -2477728, -4664934, -2477728, -328588, -6048},
%e A155871 {-18953, -1751300, -21692852, -69388094, -69388094, -21692852, -1751300, -18953},
%e A155871 {-58048, -9108221, -178273184, -906867842, -1527023168, -906867842, -178273184, -9108221, -58048},
%e A155871 {-175815, -46690547, -1403033205, -10836712218, -28587853494, -28587853494, -10836712218, -1403033205, -46690547, -175815},
%e A155871 {-529712, -237214810, -10708833968, -121383574287, -477020204064, -743288082732, -477020204064, -121383574287, -10708833968, -237214810, -529712},
%e A155871 {-1592125, -1198358670, -79944129566, -1295922974075, -7310749751463, -16818058154484, -16818058154484, -7310749751463, -1295922974075, -79944129566, -1198358670, -1592125}
%t A155871 p[x_, n_] = (If[n == 0, 1, x^n + 1 + x*D[(x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x;
%t A155871 Table[FullSimplify[ExpandAll[p[x, n]]], {n, 3, 13}];
%t A155871 a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 3, 13}];
%t A155871 Flatten[a]
%Y A155871 A060187, A155863
%K A155871 sign,tabl,uned
%O A155871 3,3
%A A155871 _Roger L. Bagula_, Jan 29 2009