This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155871 #2 Mar 30 2012 17:34:33 %S A155871 1,1,-16,-110,-16,-117,-1322,-1322,-117,-512,-9703,-22288,-9703,-512, %T A155871 -1843,-58977,-256363,-256363,-58977,-1843,-6048,-328588,-2477728, %U A155871 -4664934,-2477728,-328588,-6048,-18953,-1751300,-21692852,-69388094 %N A155871 Subtraction of polynomial coefficients of MacMahon A060187 from third derivative of Pascal's triangle A155863: p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x. %C A155871 Row sums are: %C A155871 {2, -142, -2878, -42718, -634366, -10289662, -185702398, -3715637758, %C A155871 -81748930558, -1961988796414, -51011749920766} %F A155871 p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]] %F A155871 - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x; %F A155871 t(n,m)=coefficients(p(x,n)) %e A155871 {1, 1}, %e A155871 {-16, -110, -16}, %e A155871 {-117, -1322, -1322, -117}, %e A155871 {-512, -9703, -22288, -9703, -512}, %e A155871 {-1843, -58977, -256363, -256363, -58977, -1843}, %e A155871 {-6048, -328588, -2477728, -4664934, -2477728, -328588, -6048}, %e A155871 {-18953, -1751300, -21692852, -69388094, -69388094, -21692852, -1751300, -18953}, %e A155871 {-58048, -9108221, -178273184, -906867842, -1527023168, -906867842, -178273184, -9108221, -58048}, %e A155871 {-175815, -46690547, -1403033205, -10836712218, -28587853494, -28587853494, -10836712218, -1403033205, -46690547, -175815}, %e A155871 {-529712, -237214810, -10708833968, -121383574287, -477020204064, -743288082732, -477020204064, -121383574287, -10708833968, -237214810, -529712}, %e A155871 {-1592125, -1198358670, -79944129566, -1295922974075, -7310749751463, -16818058154484, -16818058154484, -7310749751463, -1295922974075, -79944129566, -1198358670, -1592125} %t A155871 p[x_, n_] = (If[n == 0, 1, x^n + 1 + x*D[(x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x; %t A155871 Table[FullSimplify[ExpandAll[p[x, n]]], {n, 3, 13}]; %t A155871 a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 3, 13}]; %t A155871 Flatten[a] %Y A155871 A060187, A155863 %K A155871 sign,tabl,uned %O A155871 3,3 %A A155871 _Roger L. Bagula_, Jan 29 2009