cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155944 Jacobsthal numbers A001045, every second term incremented by 1.

This page as a plain text file.
%I A155944 #27 Jan 03 2022 20:45:07
%S A155944 0,2,1,4,5,12,21,44,85,172,341,684,1365,2732,5461,10924,21845,43692,
%T A155944 87381,174764,349525,699052,1398101,2796204,5592405,11184812,22369621,
%U A155944 44739244,89478485,178956972,357913941,715827884,1431655765,2863311532,5726623061,11453246124,22906492245
%N A155944 Jacobsthal numbers A001045, every second term incremented by 1.
%C A155944 Constructed from A001045 with periodic overlay, similar to A154890.
%C A155944 It appears that, except for term a(1)=2, these are the indices for which the Hankel transform of the coefficients of (1 - x)^(1/3) on F2[x] are non vanishing. See example 2.3 p. 8 of Han paper. - _Michel Marcus_, May 17 2020
%H A155944 Guo-Niu Han, <a href="https://hal.archives-ouvertes.fr/hal-02125293">Hankel continued fraction and its applications</a>, Advances in Mathematics, Elsevier, 2016, 303, pp.295-321. 10.1016/j.aim.2016.08.013. hal-02125293.
%H A155944 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2).
%F A155944 a(n) = A001045(n) + A000035(n).
%F A155944 a(n+1) = 2^n + 1 - a(n).
%F A155944 From _R. J. Mathar_, Feb 10 2009: (Start)
%F A155944 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
%F A155944 a(n) = 1/2 + 2^n/3 - 5*(-1)^n/6.
%F A155944 G.f.: x(2-3x)/((1+x)(1-x)(1-2x)). (End)
%F A155944 a(n) = floor((2^n + 1)/3) + n mod 2. - _Karl V. Keller, Jr._, Aug 15 2021
%t A155944 LinearRecurrence[{2,1,-2},{0,2,1},40] (* _Harvey P. Dale_, Mar 14 2014 *)
%o A155944 (Python) print([(2**n + 1)//3 + n%2 for n in range(40)]) # _Karl V. Keller, Jr._, Aug 15 2021
%Y A155944 Cf. A000035, A001045.
%K A155944 nonn,easy
%O A155944 0,2
%A A155944 _Paul Curtz_, Jan 31 2009
%E A155944 Definition rephrased, more terms from _R. J. Mathar_, Feb 10 2009