A155946 Numbers d for which the volume of the regular d-dimensional simplex of unit edge is rational.
0, 1, 7, 8, 17, 24, 31, 48, 49, 71, 80, 97, 120, 127, 161, 168, 199, 224, 241, 287, 288, 337, 360, 391, 440, 449, 511, 528, 577, 624, 647, 721, 728, 799, 840, 881, 960, 967
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
getrat[n_] := Sqrt[(n+1)/2^n]; nextdim[m_] := (p=m+1;While[!IntegerQ[Numerator[getrat[p]]*Denominator[getrat[p]]], p++]; p); Table[Nest[nextdim, -1, q], {q, 1, 100}] (* Frank M Jackson, Feb 26 2013 *)
-
PARI
is(n)=if(n%2,my(o=valuation(n++,2)); o%2 && issquare(n>>o,&n) && n%2,issquare(n+1)) \\ Charles R Greathouse IV, Feb 26 2013
-
PARI
list(lim)=my(v=List()); forstep(q=1,sqrtint(1+lim\1), 2, listput(v,q^2-1)); for(q=1, sqrtint(1+lim\2), listput(v,2*q^2-1)); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Feb 26 2013
Formula
The volume of the regular d-dimensional simplex of unit edge is V = sqrt((d+1)/2^d)/d!. V is rational if and only if d is of the form q^2*2^k - 1 where q is odd and k is either odd or 0. The even d of this form are the odd squares minus 1. The odd d are the set generated by the function 4x + 3 from the number form 2*q^2 - 1 with q odd.