A155973 Smallest x such that prime(2n)x^(2n-1) + prime(2n-1)x^(2n-2) + prime(2n-2)x^(2n-3) +...+ prime(2)x^1 + 2x^0 evaluates to an odd prime.
1, 1, 1, 11, 23, 1, 1, 75, 29, 27, 159, 27, 107, 179, 63, 93, 675, 593, 11, 1299, 153, 153, 197, 35, 31, 227, 297, 439, 33, 1, 133, 1, 3, 1071, 173, 153, 299, 5, 1443, 1275, 611, 1809, 941, 669, 537, 51, 151, 1, 131, 1, 1, 343, 199, 1, 279, 3, 1, 439, 597, 453, 1, 1, 1187, 391
Offset: 1
Keywords
Examples
n=1: 3x + 2, prime for x = 1, so a(1) = 1. n=2: 7x^3 + 5x^2 + 3x + 2, prime for x = 1, so a(2) = 1. n=3: 13x^5 + 11x^4 + 7x^3 + 5x^2 + 3x + 2, prime for x = 1, so a(3) = 1. n=4: 19x^7 + 17x^6 + 13x^5 + 11x^4 + 7x^3 + 5x^2 + 3x + 2, prime for x = 11, so a(4) = 11.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..200
Programs
-
PARI
primenomial(n) = { ct=0; sr=0; p=0; d=0; d1=0; forstep(m=1,n,2, for(x=0,n,y=2; for(j=2,m+1, p = prime(j); y+=x^(j-1)*p; ); if(y>2&&ispseudoprime(y),ct+=1; print1(x",");break ); )) }
-
PARI
a(n)=my(P=Polrev(primes(2*n)),k=1);while(!ispseudoprime(subst(P, 'x, k)), k+=2); k \\ Charles R Greathouse IV, Jan 15 2013
Extensions
a(39)-a(64) from Charles R Greathouse IV, Jan 17 2013
Comments