cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155973 Smallest x such that prime(2n)x^(2n-1) + prime(2n-1)x^(2n-2) + prime(2n-2)x^(2n-3) +...+ prime(2)x^1 + 2x^0 evaluates to an odd prime.

Original entry on oeis.org

1, 1, 1, 11, 23, 1, 1, 75, 29, 27, 159, 27, 107, 179, 63, 93, 675, 593, 11, 1299, 153, 153, 197, 35, 31, 227, 297, 439, 33, 1, 133, 1, 3, 1071, 173, 153, 299, 5, 1443, 1275, 611, 1809, 941, 669, 537, 51, 151, 1, 131, 1, 1, 343, 199, 1, 279, 3, 1, 439, 597, 453, 1, 1, 1187, 391
Offset: 1

Views

Author

Cino Hilliard, Jan 31 2009

Keywords

Comments

Conjecture: The number of 1's in this sequence is infinite.
a(n) = 1 if and only if 2n is in A013916.

Examples

			n=1: 3x + 2, prime for x = 1, so a(1) = 1.
n=2: 7x^3 + 5x^2 + 3x + 2, prime for x = 1, so a(2) = 1.
n=3: 13x^5 + 11x^4 + 7x^3 + 5x^2 + 3x + 2, prime for x = 1, so a(3) = 1.
n=4: 19x^7 + 17x^6 + 13x^5 + 11x^4 + 7x^3 + 5x^2 + 3x + 2, prime for x = 11, so a(4) = 11.
		

Programs

  • PARI
    primenomial(n) = { ct=0; sr=0; p=0; d=0; d1=0; forstep(m=1,n,2, for(x=0,n,y=2; for(j=2,m+1, p = prime(j); y+=x^(j-1)*p; );
    if(y>2&&ispseudoprime(y),ct+=1; print1(x",");break ); )) }
    
  • PARI
    a(n)=my(P=Polrev(primes(2*n)),k=1);while(!ispseudoprime(subst(P, 'x, k)), k+=2); k \\ Charles R Greathouse IV, Jan 15 2013

Extensions

a(39)-a(64) from Charles R Greathouse IV, Jan 17 2013