cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156017 Schroeder paths with two rise colors and two level colors.

This page as a plain text file.
%I A156017 #82 Dec 23 2024 11:35:23
%S A156017 1,4,24,176,1440,12608,115584,1095424,10646016,105522176,1062623232,
%T A156017 10840977408,111811534848,1163909087232,12212421230592,
%U A156017 129027376349184,1371482141884416,14656212306231296,157369985643577344,1696975718802522112,18369603773021552640
%N A156017 Schroeder paths with two rise colors and two level colors.
%C A156017 Hankel transform is 8^C(n+1,2). - _Philippe Deléham_, Feb 04 2009
%C A156017 a(n-1) is also the number of ways a list of n items can be grouped into nested sublists (e.g., [a b c] to [a b c], [[a] b c], [[a, b] c], [[a [b]] c], and so on). - _Ryan Tosh_, Nov 10 2021
%H A156017 Vincenzo Librandi, <a href="/A156017/b156017.txt">Table of n, a(n) for n = 0..200</a>
%H A156017 Veronica Bitonti, Bishal Deb, and Alan D. Sokal, <a href="https://arxiv.org/abs/2412.10214">Thron-type continued fractions (T-fractions) for some classes of increasing trees</a>, arXiv:2412.10214 [math.CO], 2024. See p. 58.
%H A156017 F. Chapoton, F. Hivert, and J.-C. Novelli, <a href="http://arxiv.org/abs/1307.0092">A set-operad of formal fractions and dendriform-like sub-operads</a>, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
%H A156017 Z. Chen and H. Pan, <a href="http://arxiv.org/abs/1608.02448">Identities involving weighted Catalan-Schroder and Motzkin Paths</a>, arXiv:1608.02448 [math.CO], 2016. See eq (1.13) a=4, b=2.
%H A156017 Loïc Foissy, <a href="https://hal.archives-ouvertes.fr/hal-03187479">Generalized associative algebras</a>, hal-03187479 [math.RA], 2021.
%F A156017 G.f.: (1-2x-sqrt(1-12x+4x^2))/(4x);
%F A156017 G.f.: 1/(1-2x-2x/(1-2x-2x/(1-2x-2x/(1-... (continued fraction);
%F A156017 a(n) = 2^n*Sum_{k=0..n} C(n+k,2k)*A000108(k) = 2^n*A006318(n).
%F A156017 D-finite with recurrence (n+1)*a(n) +6*(1-2*n)*a(n-1) +4*(n-2)*a(n-2) = 0. - _R. J. Mathar_, Nov 14 2011
%F A156017 a(n) = Sum_{k=0..n} A090181(n,k)*2^(n+k). - _Philippe Deléham_, Nov 27 2011
%F A156017 a(n) ~ sqrt(4+3*sqrt(2))*(6+4*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 20 2012
%F A156017 G.f.: 1/Q(0) where Q(k) = 1 + k*(1-2*x) - 2*x - 2*x*(k+1)*(k+2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Mar 14 2013
%F A156017 a(n) = 2*A059435(n) for n >= 1. - _Sergey Kirgizov_, Feb 13 2017
%F A156017 a(n) = 2^n*hypergeom([-n, n + 1], [2], -1). - _Peter Luschny_, Nov 25 2020
%p A156017 A156017_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
%p A156017 for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1], j=0..w-1)) od;
%p A156017 convert(a, list) end: A156017_list(20); # _Peter Luschny_, Feb 29 2016
%t A156017 CoefficientList[Series[(1-2*x-Sqrt[1-12*x+4*x^2])/(4*x), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%t A156017 a[n_] := 2^n Hypergeometric2F1[- n, n + 1, 2, -1];
%t A156017 Table[a[n], {n, 0, 20}] (* _Peter Luschny_, Nov 25 2020 *)
%Y A156017 Cf. A059435, A090181.
%Y A156017 Partial sums of A336283.
%K A156017 easy,nonn
%O A156017 0,2
%A A156017 _Paul Barry_, Feb 01 2009
%E A156017 Spelling/notation corrections by _Charles R Greathouse IV_, Mar 18 2010