This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156020 #19 Jan 05 2022 10:43:48 %S A156020 1,106,877203,2195225334,17599271777,360950005720,17348726394920, %T A156020 1996375977735378,26627865341803449,668044491303666717, %U A156020 13157161331655387213,7653283960850915182425,3256741424583567733172850,388712386741794886666062286,266182386623377135274423955447 %N A156020 Denominators in an infinite sum for Pi. %C A156020 For k >= 0, define Q(k) = A002485(2k)/A002486(2k) (convergents to Pi that are less than Pi), so Pi = Sum_{k>=1} (Q(k) - Q(k-1)). Then a(n) is the denominator of Q(n) - Q(n-1). %F A156020 a(n) = denominator(A002485(2n)/A002486(2n) - A002485(2n-2)/A002486(2n-2)). %e A156020 a(2) = 106 since A002485(4)/A002486(4) = 333/106, A002485(2)/A002486(2) = 3/1, and 333/106 - 3/1 = 15/106 (see table below). %e A156020 Pi = 3/1 + 15/106 + 73/877203 + 1/2195225334 + 2/17599271777 + 3/360950005720 + 7/17348726394920 + .... %e A156020 . %e A156020 n Q(n) = A002485(2n)/A002486(2n) Q(n) - Q(n-1) a(n) %e A156020 - ------------------------------ ------------- ------ %e A156020 0 0/1 = 0 - - %e A156020 1 3/1 = 3 3/1 1 %e A156020 2 333/106 = 3.1415094339... 15/106 106 %e A156020 3 103993/33102 = 3.1415926530... 73/877203 877203 %o A156020 (PARI) cfPi=contfrac(Pi); %o A156020 vA002485 = concat(1, contfracpnqn(cfPi, #cfPi)[1, ]); %o A156020 A002485(n) = vA002485[n]; %o A156020 A002486(n) = contfracpnqn(vecextract(cfPi, 2^n-1))[2, 2]; %o A156020 a(n) = if (n==1, 1, denominator(A002485(2*n)/A002486(2*n) - A002485(2*n-2)/A002486(2*n-2))); \\ _Michel Marcus_, Jan 05 2022 %Y A156020 Cf. A002485, A002486, A156019 (numerators). %K A156020 nonn,frac %O A156020 1,2 %A A156020 _Gary W. Adamson_ and _Alexander R. Povolotsky_, Feb 01 2009 %E A156020 More terms from _Alexander R. Povolotsky_, Sep 01 2009 %E A156020 More terms from _Michel Marcus_, Jan 05 2022