A156025 Number of n-bit numbers whose binary representation's substrings represent the maximal number (A112509(n)) of distinct integers.
2, 1, 1, 3, 2, 6, 5, 1, 4, 5, 2, 8, 10, 4, 16, 22, 12, 2, 10, 19, 17, 7, 1, 5, 9, 7, 2, 11, 24, 28, 20, 9, 2, 10, 18, 14, 4, 26, 68, 94, 78, 44, 18, 4, 22, 46, 46, 22, 4, 29, 104, 4, 20, 36, 28, 8, 52, 140, 202, 168, 80, 20, 2, 14, 40, 60, 50, 22, 4, 152, 23, 2
Offset: 1
Examples
The n-bit numbers in question are, in binary, for n <= 8: 0 1; 10; 110; 1100 1101 1110, 11100 11101; 111000 111001 111010 111011 111100 111101; 1110100 1111000 1111001 1111010 1111011; 11110100.
Links
- Martin Fuller, Table of n, a(n) for n = 1..80
- 2008/9 British Mathematical Olympiad Round 2, Problem 4, Jan 29 2009.
Crossrefs
Programs
-
Python
from itertools import product def c(w): return len(set(w[i:j+1] for i in range(len(w)) if w[i] != "0" for j in range(i,len(w)))) + int("0" in w) def a(n): if n == 1: return 2 m, argm, cardm = -1, None, 0 for b in product("01", repeat=n-1): v = c("1"+"".join(b)) if v == m: argm, cardm = int("1"+"".join(b), 2), cardm + 1 elif v > m: m, argm, cardm = v, int("1"+"".join(b), 2), 1 return cardm print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jan 13 2023
Extensions
a(32) onwards from Martin Fuller, Jul 24 2025
Comments