A156093 One ninth of the alternating sum of the squares of the first n Fibonacci numbers with index divisible by 4.
0, -1, 48, -2256, 105985, -4979040, 233908896, -10988739073, 516236827536, -24252142155120, 1139334444463105, -53524466747610816, 2514510602693245248, -118128473859834915841, 5549523760809547799280, -260709488284188911650320
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-48,-48,-1).
Programs
-
Mathematica
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k (1/9) Fibonacci[4k]^2, {k, 1, n} ], Sum[ -(-1)^k (1/9) Fibonacci[-4k]^2, {k, 1, -n - 1} ] ]
Formula
a(n) = (1/9) sum_{k=1..n} (-1)^k F(4k)^2.
Closed form: a(n) = (-1)^n (L(8n+4) - 7)/315.
Factored closed form: a(n) = (-1)^n F(4n) F(4n+4)/63.
Recurrence: a(n) + 47 a(n-1) + a(n-2) = (-1)^n.
Recurrence: a(n) + 48 a(n-1) + 48 a(n-2) + a(n-3) = 0.
G.f.: A(x) = -x/(1 + 48 x + 48 x^2 + x^3) = -x/((1 + x)(1 + 47 x + x^2)).
Comments