cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156133 Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Denominator(p(x,n)).

This page as a plain text file.
%I A156133 #4 Jul 05 2012 11:37:37
%S A156133 1,-1,1,1,1,-2,-2,1,1,-3,-6,3,1,1,-4,-19,-4,1,-1,8,40,-60,-40,8,1,1,
%T A156133 -13,-104,260,260,-104,-13,1,1,-21,-273,1092,1820,-1092,-273,21,1,1,
%U A156133 -33,-747,3894,16270,3894,-747,-33,1,-1,55,1870,-19635,-85085,136136,85085
%N A156133 Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Denominator(p(x,n)).
%C A156133 Row sums are:
%C A156133 {1, 1, -2, -4, -25, -44, 288, 1276, 22500, 96976, -1707552,...}.
%C A156133 The denominator and numerator polynomials appear to be new.
%F A156133 p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Denominator(p(x,n)).
%e A156133 {1},
%e A156133 {-1, 1, 1},
%e A156133 {1, -2, -2, 1},
%e A156133 {1, -3, -6, 3, 1},
%e A156133 {1, -4, -19, -4, 1},
%e A156133 {-1, 8, 40, -60, -40, 8, 1},
%e A156133 {1, -13, -104, 260, 260, -104, -13, 1},
%e A156133 {1, -21, -273, 1092, 1820, -1092, -273, 21, 1},
%e A156133 {1, -33, -747, 3894, 16270, 3894, -747, -33, 1},
%e A156133 {-1, 55, 1870, -19635, -85085, 136136, 85085, -19635, -1870, 55, 1},
%e A156133 {1, -89, -4895, 83215, 582505, -1514513, -1514513, 582505, 83215, -4895, -89, 1}
%t A156133 Clear[t0, p, x, n, m];
%t A156133 p[x_, n_] = (1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]
%t A156133 Table[Denominator[FullSimplify[ExpandAll[p[x, n]]]], {n, 0, 10}];
%t A156133 Flatten[%]
%Y A156133 A000045, A055870
%K A156133 sign,tabl,uned
%O A156133 0,6
%A A156133 _Roger L. Bagula_, Feb 04 2009