cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156151 Primes p such that p+2 = 0 (mod pi(p)), where pi(p)=A000720(p) is the prime counting function.

This page as a plain text file.
%I A156151 #11 Feb 24 2020 15:59:56
%S A156151 2,31,353,9559783,9559843,9559903,3779853313,27788573801,204475054073,
%T A156151 204475054723,1505578024807,1505578025779,241849345578351691,
%U A156151 1784546064357413809,1784546064357419959,97199410027249994623,97199410027250046643,97199410027250047453,97199410027250123143
%N A156151 Primes p such that p+2 = 0 (mod pi(p)), where pi(p)=A000720(p) is the prime counting function.
%F A156151 a(n) = A000040(A092044(n)).
%o A156151 (PARI) p=c=0; until(0, (2+p=nextprime(p+1))%c++ || print1(p",")) \\ PARI syntax for || updated Feb 20 2020
%Y A156151 Cf. A156152.
%K A156151 nonn
%O A156151 1,1
%A A156151 _M. F. Hasler_, Feb 04 2009
%E A156151 More terms from _Max Alekseyev_, May 03 2009
%E A156151 a(13)-a(19) from _Giovanni Resta_, Feb 23 2020