This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156156 #5 Jun 30 2023 00:19:01 %S A156156 13,53,305,1777,10357,60365,351833,2050633,11951965,69661157, %T A156156 406014977,2366428705,13792557253,80388914813,468540931625, %U A156156 2730856674937,15916599117997,92768738033045,540695829080273,3151406236448593 %N A156156 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 13, a(2) = 53. %C A156156 lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2). %H A156156 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6, -1). %F A156156 a(n) = ((50+31*sqrt(2))*(3-2*sqrt(2))^n+(50-31*sqrt(2))*(3+2*sqrt(2))^n)/4. %F A156156 G.f.: x*(13-25*x)/(1-6*x+x^2). %o A156156 (PARI) {m=20; v=concat([13, 53], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v} %Y A156156 First trisection of A155923. %Y A156156 Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156157, A156158. %K A156156 nonn %O A156156 1,1 %A A156156 _Klaus Brockhaus_, Feb 09 2009 %E A156156 Replaced abbreviation by sqrt(2) _Klaus Brockhaus_, Feb 12 2009 %E A156156 G.f. corrected by _Klaus Brockhaus_, Sep 23 2009