This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156177 #16 Mar 19 2020 16:35:20 %S A156177 1,352,7869952,1243925143552,722906928498737152, %T A156177 1118389087843083461066752,3794717805092151129643367268352, %U A156177 24809622030942586708931326728787197952,284876472796397041595189052788763077537431552,5358281136280777382502986500754127200892786313265152 %N A156177 A bisection of A000436. %F A156177 a(n) = | 3^(4*n)*2^(4*n+1)*lerchphi(-1,-4*n,1/3) |. - _Peter Luschny_, Apr 27 2013 %F A156177 a(n) = 2^(8*n+1)*3^(4*n)*(zeta(-4*n,1/6)-zeta(-4*n,2/3)), where zeta(a,z) is the generalized Riemann zeta function. - _Peter Luschny_, Mar 11 2015 %p A156177 a := n -> 2^(8*n+1)*3^(4*n)*(Zeta(0,-4*n,1/6)-Zeta(0,-4*n,2/3)): %p A156177 seq(a(n), n=0..9); # _Peter Luschny_, Mar 11 2015 %t A156177 b[0] = 1; b[n_] := b[n] = (-1)^n (1-Sum[(-1)^i Binomial[2n, 2i] 3^(2n-2i) b[i], {i, 0, n-1}]); %t A156177 a[n_] := b[2n]; %t A156177 Table[a[n], {n, 0, 9}] (* _Jean-François Alcover_, Jul 08 2019 *) %o A156177 (Sage) %o A156177 from mpmath import mp, lerchphi %o A156177 mp.dps = 64; mp.pretty = True %o A156177 def A156177(n): return abs(3^(4*n)*2^(4*n+1)*lerchphi(-1,-4*n,1/3)) %o A156177 [int(A156177(n)) for n in (0..9)] # _Peter Luschny_, Apr 27 2013 %K A156177 nonn %O A156177 0,2 %A A156177 _N. J. A. Sloane_, Nov 07 2009