This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156216 #3 Mar 30 2012 18:37:16 %S A156216 1,1,5,26,634,32928,5704263,2470113915,2978904483553,9401949327631932, %T A156216 79268874871208384494,1762019469678472912173354, %U A156216 103537245443913551792800303420,16030602885085486700462431379649694 %N A156216 G.f.: A(x) = exp( Sum_{n>=1} A000204(n)^n * x^n/n ), a power series in x with integer coefficients. %C A156216 Compare to g.f. of Fibonacci sequence: exp( Sum_{n>=1} A000204(n)*x^n/n ), where A000204 is the Lucas numbers. %C A156216 More generally, if exp( Sum_{n>=1} C(n) * x^n/n ) equals a power series in x with integer coefficients, then exp( Sum_{n>=1} C(n)^n * x^n/n ) also equals a power series in x with integer coefficients (conjecture). %F A156216 a(n) = (1/n)*Sum_{k=1..n} A000204(k)^k*a(n-k) for n>0, with a(0) = 1. %F A156216 Logarithmic derivative forms A067961. [From _Paul D. Hanna_, Sep 13 2010] %e A156216 G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 32928*x^5 + 5704263*x^6 +... %e A156216 log(A(x)) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 11^5*x^5/5 + 18^6*x^6/6 +... %o A156216 (PARI) {a(n)=polcoeff(exp(sum(m=1,n,(fibonacci(m+1)+fibonacci(m-1))^m*x^m/m)+x*O(x^n)),n)} %Y A156216 Cf. A000045, A000204, A156212. %Y A156216 Cf. A067961. [From _Paul D. Hanna_, Sep 13 2010] %K A156216 nonn %O A156216 0,3 %A A156216 _Paul D. Hanna_, Feb 06 2009