This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156220 #10 Jan 02 2022 07:26:18 %S A156220 -2,-2,3,-2,3,-1,-2,3,-1,109,-2,3,-1,325,1555523,-2,3,-1,973,32671835, %T A156220 49621794478165,-2,3,-1,2917,686126051,15630874866123949, %U A156220 27744919164118690798376051,-2,3,-1,8749,14408699579,4923725784550050421,270929135785330782929292449579,2134369240927848351630724472718209102550421 %N A156220 Triangle T(n, k) = (2^k/3)*Q(k, n), with T(0, 0) = -2, where Q(k, n) = (1/2)*( -Q(k-1, n) + 3*p(2, k-1)^n), and p(q, n) = Product_{j=1..n} ( (1-x^k)/(1-x) ), read by rows. %C A156220 A triangle sequence based on Carlitz q-Eulerian formulas (see ref). %H A156220 G. C. Greubel, <a href="/A156220/b156220.txt">Rows n = 0..25 of the triangle, flattened</a> %H A156220 L. Carlitz, <a href="https://projecteuclid.org/journals/duke-mathematical-journal/volume-15/issue-4/q-Bernoulli-numbers-and-polynomials/10.1215/S0012-7094-48-01588-9.short">q-Bernoulli numbers and polynomials</a>, Duke Math. J. Volume 15, Number 4 (1948), 987-1000. %F A156220 T(n, k) = (2^k/3)*Q(k, n), with T(0, 0) = -2, where Q(k, n) = (1/2)*( -Q(k-1, n) + 3*p(2, k-1)^n), and p(q, n) = Product_{j=1..n} ( (1-q^k)/(1-q) ). %e A156220 Triangle begins as: %e A156220 -2; %e A156220 -2, 3; %e A156220 -2, 3, -1; %e A156220 -2, 3, -1, 109; %e A156220 -2, 3, -1, 325, 1555523; %e A156220 -2, 3, -1, 973, 32671835, 49621794478165; %e A156220 -2, 3, -1, 2917, 686126051, 15630874866123949, 27744919164118690798376051; %t A156220 Q[x_, n_]:= Q[x, n]= If[n==0, 1, If[x==0, -6, (1/2)*(-Q[x-1, n] + 3*((-1)^(k-1)*QPochhammer[2, 2, x-1])^n)]]; %t A156220 T[n_, k_]:= If[n==0, -2, (2^k/3)*Q[k, n]]; %t A156220 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Dec 31 2021 *) %o A156220 (Sage) %o A156220 from sage.combinat.q_analogues import q_pochhammer %o A156220 @CachedFunction %o A156220 def Q(k,n): %o A156220 if (n==0): return 1 %o A156220 elif (k==0): return -6 %o A156220 else: return (1/2)*( -Q(k-1,n) + 3*(-1)^(n*(k-1))*(q_pochhammer(k-1,2,2))^n) %o A156220 def T(n,k): return -2 if (n==0) else (2^k/3)*Q(k,n) %o A156220 flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Dec 31 2021 %Y A156220 Cf. A156222. %K A156220 sign,tabl %O A156220 0,1 %A A156220 _Roger L. Bagula_, Feb 06 2009 %E A156220 Edited by _G. C. Greubel_, Dec 31 2021