This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156224 #5 Dec 31 2021 19:36:08 %S A156224 1,1,1,1,4,1,3,10,10,3,3,18,22,18,3,5,28,58,58,28,5,7,46,103,158,103, %T A156224 46,7,9,68,187,313,313,187,68,9,11,94,306,614,698,614,306,94,11,15, %U A156224 133,502,1174,1636,1636,1174,502,133,15,19,188,763,2038,3358,4030,3358,2038,763,188,19 %N A156224 Triangle T(n, k) = binomial(n, k)*(A000009(n) + A000009(n-k) + A000009(k)) - 2, read by rows. %H A156224 G. C. Greubel, <a href="/A156224/b156224.txt">Rows n = 0..50 of the triangle, flattened</a> %F A156224 T(n, k) = binomial(n, k)*(A000009(n) + A000009(n-k) + A000009(k)) - 2. %F A156224 T(n, n-k) = T(n, k). %e A156224 Triangle begins as: %e A156224 1; %e A156224 1, 1; %e A156224 1, 4, 1; %e A156224 3, 10, 10, 3; %e A156224 3, 18, 22, 18, 3; %e A156224 5, 28, 58, 58, 28, 5; %e A156224 7, 46, 103, 158, 103, 46, 7; %e A156224 9, 68, 187, 313, 313, 187, 68, 9; %e A156224 11, 94, 306, 614, 698, 614, 306, 94, 11; %e A156224 15, 133, 502, 1174, 1636, 1636, 1174, 502, 133, 15; %e A156224 19, 188, 763, 2038, 3358, 4030, 3358, 2038, 763, 188, 19; %t A156224 T[n_, k_]:= Binomial[n, k]*(PartitionsQ[n] +PartitionsQ[n-k] +PartitionsQ[k]) -2; %t A156224 Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten %o A156224 (Sage) %o A156224 # Uses Peter Luschny's program for A000009 %o A156224 def EulerTransform(a): %o A156224 @cached_function %o A156224 def b(n): %o A156224 if n == 0: return 1 %o A156224 s = sum(sum(d * a(d) for d in divisors(j)) * b(n-j) for j in (1..n)) %o A156224 return s//n %o A156224 return b %o A156224 a = BinaryRecurrenceSequence(0, 1) %o A156224 P = EulerTransform(a) %o A156224 def T(n,k): return binomial(n,k)*(P(n) + P(n-k) + P(k)) - 2 %o A156224 flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Dec 31 2021 %Y A156224 Cf. A000009. %K A156224 nonn,tabl %O A156224 0,5 %A A156224 _Roger L. Bagula_, Feb 06 2009 %E A156224 Edited by _G. C. Greubel_, Dec 31 2021