cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156232 a(n) is the number of induced subgraphs with odd number of edges in the cycle graph C(n).

This page as a plain text file.
%I A156232 #30 Feb 04 2016 06:33:53
%S A156232 0,4,4,16,24,64,112,256,480,1024,1984,4096,8064,16384,32512,65536,
%T A156232 130560,262144,523264,1048576,2095104,4194304,8384512,16777216,
%U A156232 33546240,67108864,134201344,268435456,536838144,1073741824,2147418112
%N A156232 a(n) is the number of induced subgraphs with odd number of edges in the cycle graph C(n).
%C A156232 Essentially the same sequence (see A204696) appears in the Cusick-Stanica paper.
%H A156232 G. C. Greubel, <a href="/A156232/b156232.txt">Table of n, a(n) for n = 2..1000</a>
%H A156232 Thomas W. Cusick, and Pantelimon Stanica, <a href="http://dx.doi.org/10.1016/S0012-365X(02)00354-0">Fast evaluation, weights and nonlinearity of rotation-symmetric functions</a>, Discrete Math. 258 (2002), no. 1-3, 289-301.
%H A156232 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2, 2, -4).
%F A156232 a(n) = 2^(n-1) - 2^(n/2) if n is even, 2^(n-1) otherwise.
%F A156232 G.f.: 4*x^3*(1-x)/((1-2*x)*(1-2*x^2)). a(n)=2*a(n-1)+2*a(n-2)-4*a(n-3). - _R. J. Mathar_, Feb 10 2009
%F A156232 E.g.f.: 2*(exp(2*x) - cosh(sqrt(2)*x)). - _G. C. Greubel_, Aug 26 2015
%t A156232 RecurrenceTable[{a[n]== 2*a[n-1]  + 2*a[n-2] - 4*a[n-3], a[0]==0, a[1]==4, a[2]==4}, a, {n,0,50}] (* _G. C. Greubel_, Aug 26 2015 *)
%t A156232 LinearRecurrence[{2, 2, -4}, {0, 4, 4}, 40] (* _Vincenzo Librandi_, Aug 27 2015 *)
%o A156232 (PARI) Vec(4*x^3*(1-x)/((1-2*x)*(1-2*x^2)) + O(x^40)) \\ _Michel Marcus_, Aug 26 2015
%Y A156232 Cf. A000749, A032085.
%K A156232 nonn
%O A156232 2,2
%A A156232 Alessandro Cosentino (cosenal(AT)gmail.com), Feb 06 2009
%E A156232 More terms from _R. J. Mathar_, Feb 10 2009