cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156239 Smallest octagonal number with n distinct prime factors.

Original entry on oeis.org

8, 21, 280, 1680, 38760, 326040, 10986360, 185040240, 4897368840, 383246454360, 13143876816840, 376306806515640, 27961718389364760, 3250163645572822440, 152582219844376633080, 6202664616058189439160, 1454199694916714984358120
Offset: 1

Views

Author

Donovan Johnson, Feb 07 2009

Keywords

Comments

a(18) <= 68286531655807008335271480. - Donovan Johnson, Feb 15 2012

Examples

			a(9) = 4897368840 = 2^3*3*5*7*13*17*23*31*37. 4897368840 is the smallest octagonal number with 9 distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PrimeNu@ n; nn = 10; k = 1; t = Table[0, {nn}]; While[Times@@t == 0, oct = k(3k-2); a = f@ oct; If[ a <= nn && t[[a]] == 0, t[[a]] = k; Print[{a, oct}]]; k++]; t (* Robert G. Wilson v, Aug 23 2012 *)
  • Python
    from sympy import primefactors
    def octagonal(n): return n*(3*n - 2)
    def a(n):
        k = 1
        while len(primefactors(octagonal(k))) != n: k += 1
        return octagonal(k)
    print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Aug 21 2021
    
  • Python
    # faster version using octagonal structure
    from sympy import primefactors, primorial
    def A000567(n): return n*(3*n-2)
    def A000567_distinct_factors(n):
        return len(set(primefactors(n)) | set(primefactors(3*n-2)))
    def a(n):
        k, lb = 1, primorial(n)
        while A000567(k) < lb: k += 1
        while A000567_distinct_factors(k) != n: k += 1
        return A000567(k)
    print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Aug 21 2021

Extensions

a(17) from Donovan Johnson, Jul 03 2011