This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156304 #14 Nov 02 2024 12:31:04 %S A156304 1,1,8,21,77,199,661,1663,4852,12382,33289,82877,213026,518109, %T A156304 1279852,3053404,7312985,17093793,39952528,91661695,209709116, %U A156304 473095589,1062567288,2359804486,5214774263,11415904502,24860918943,53709881911 %N A156304 G.f.: A(x) = exp( Sum_{n>=1} sigma(n^3)*x^n/n ), a power series in x with integer coefficients. %C A156304 Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n. %C A156304 Euler transform of A160889. - _Vaclav Kotesovec_, Nov 01 2024 %H A156304 Seiichi Manyama, <a href="/A156304/b156304.txt">Table of n, a(n) for n = 0..5000</a> %F A156304 a(n) = (1/n)*Sum_{k=1..n} sigma(k^3) * a(n-k) for n>0, with a(0)=1. %F A156304 log(a(n)) ~ 4*Pi*c^(1/4)*n^(3/4) / (3^(5/4)*5^(1/4)), where c = A330595 = Product_{primes p} (1 + 1/p^2 + 1/p^3) = 1.74893299784324530303390699... - _Vaclav Kotesovec_, Nov 01 2024 %e A156304 G.f.: A(x) = 1 + x + 8*x^2 + 21*x^3 + 77*x^4 + 199*x^5 + 661*x^6 +... %e A156304 log(A(x)) = x + 15*x^2/2 + 40*x^3/3 + 127*x^4/4 + 156*x^5/5 + 600*x^6/6 +... %o A156304 (PARI) {a(n)=polcoeff(exp(sum(m=1,n,sigma(m^3)*x^m/m)+x*O(x^n)),n)} %o A156304 (PARI) {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k^3)*a(n-k)))} %Y A156304 Cf. A000203 (sigma), A000041 (partitions), A156303, A202993, A203557. %Y A156304 Cf. A160889, A175926, A330595. %K A156304 nonn %O A156304 0,3 %A A156304 _Paul D. Hanna_, Feb 08 2009