This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156325 #16 Aug 05 2025 04:32:55 %S A156325 1,1,4,34,482,10056,286372,10591372,491169996,27826318000, %T A156325 1887581200256,150885500428224,14028718134958936,1500672248541122944, %U A156325 182987661921689610000,25231215606822797450176,3906382859414378995123088,674864208557744341737593088,129369340822722468679389762496 %N A156325 E.g.f.: A(x) = exp( Sum_{n>=1} n(n+1)/2 * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1. %F A156325 a(n) = Sum_{k=1..n} k(k+1)/2 * C(n-1,k-1)*a(k-1)*a(n-k) for n>0, with a(0)=1. %F A156325 E.g.f. A(x) satisfies A(x) = exp( d/dx x^2*A(x)/2 ). - _Paul D. Hanna_, Dec 17 2017 %F A156325 a(n) ~ c * n!^2 * n^3 / 2^n, where c = 0.1298868467763756870740708... - _Vaclav Kotesovec_, Aug 05 2025 %e A156325 E.g.f: A(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 482*x^4/4! + 10056*x^5/5! +... %e A156325 log(A(x)) = x + 3*1*x^2/2! + 6*4*x^3/3! + 10*34*x^4/4! + 15*482*x^5/5! +... %e A156325 such that log(A(x)) = x*A(x) + x^2*A'(x)/2 = d/dx x^2*A(x)/2. %t A156325 terms = 19; A[_] = 1; Do[A[x_] = Exp[x*A[x]+x^2*A'[x]/2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* _Stefano Spezia_, Aug 04 2025 *) %o A156325 (PARI) {a(n) = if(n==0,1,n!*polcoeff(exp(sum(k=1,n,k*(k+1)/2*a(k-1)*x^k/k!)+x*O(x^n)),n))} %o A156325 for(n=0,25,print1(a(n),", ")) %o A156325 (PARI) {a(n) = if(n==0,1,sum(k=1,n,k*(k+1)/2*binomial(n-1,k-1)*a(k-1)*a(n-k)))} %o A156325 for(n=0,25,print1(a(n),", ")) %o A156325 (PARI) {a(n) = my(A=1); for(i=1,n, A = exp(deriv(x^2*A/2 +x^2*O(x^n)))); n!*polcoeff(A,n)} %o A156325 for(n=0,25,print1(a(n),", ")) \\ _Paul D. Hanna_, Dec 17 2017 %o A156325 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j/2)*binomial(i-1, j)*v[j+1]*v[i-j])); v; \\ _Seiichi Manyama_, Jul 25 2025 %Y A156325 Cf. A156326, A156327. %Y A156325 Cf. A385101, A386533, A386534. %K A156325 nonn %O A156325 0,3 %A A156325 _Paul D. Hanna_, Feb 08 2009