This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156327 #14 Aug 05 2025 04:15:02 %S A156327 1,2,14,194,4280,134232,5587408,294882464,19102334112,1482726089600, %T A156327 135370060595264,14325189014356992,1736329123715436544, %U A156327 238698935851482530816,36911830664814417907200,6375425555384677316100608,1222423907917065757088181248,258802786174190320917263867904 %N A156327 E.g.f.: A(x) = exp( Sum_{n>=1} n*(n+3)/2 * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1. %F A156327 a(n) = Sum_{k=1..n} k*(k+3)/2 * C(n-1,k-1)*a(k-1)*a(n-k) for n>0, with a(0)=1. %F A156327 E.g.f. A(x) satisfies A(x) = exp(2 * x * A(x) + x^2/2 * A'(x)). - _Seiichi Manyama_, Jul 25 2025 %F A156327 a(n) ~ c * n!^2 * n^7 / 2^n, where c = 0.00029014625163457216349268... - _Vaclav Kotesovec_, Aug 05 2025 %e A156327 E.g.f: A(x) = 1 + 2*x + 14*x^2/2! + 194*x^3/3! + 4280*x^4/4! + 134232*x^5/5! +... %e A156327 log(A(x)) = 2*1*x + 5*2*x^2/2! + 9*14*x^3/3! + 14*194*x^4/4! + 20*4280*x^5/5! +... %t A156327 terms = 18; A[_] = 1; Do[A[x_] = Exp[2x*A[x]+x^2*A'[x]/2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* _Stefano Spezia_, Aug 04 2025 *) %o A156327 (PARI) {a(n)=if(n==0,1,n!*polcoeff(exp(sum(k=1,n,k*(k+3)/2*a(k-1)*x^k/k!)+x*O(x^n)),n))} %o A156327 (PARI) {a(n)=if(n==0,1,sum(k=1,n,k*(k+3)/2*binomial(n-1,k-1)*a(k-1)*a(n-k)))} %o A156327 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(2+j/2)*binomial(i-1, j)*v[j+1]*v[i-j])); v; \\ _Seiichi Manyama_, Jul 25 2025 %Y A156327 Cf. A156325, A156326. %K A156327 nonn %O A156327 0,2 %A A156327 _Paul D. Hanna_, Feb 08 2009