This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156348 #25 Nov 16 2017 07:20:41 %S A156348 1,1,1,1,0,1,1,2,0,1,1,0,0,0,1,1,3,3,0,0,1,1,0,0,0,0,0,1,1,4,0,4,0,0, %T A156348 0,1,1,0,6,0,0,0,0,0,1,1,5,0,0,5,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,6, %U A156348 10,10,0,6,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,7,0,0,0,0,7,0,0,0,0,0,0 %N A156348 Triangle T(n,k) read by rows. Column of Pascal's triangle interleaved with k-1 zeros. %C A156348 The rows of the Pascal triangle are here found as square root parabolas like in the plots at www.divisorplot.com. Central binomial coefficients are found at the square root boundary. %C A156348 A156348 * A000010 = A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, ...). - _Gary W. Adamson_, Feb 16 2009 %C A156348 Row sums give A157019. %H A156348 Reinhard Zumkeller, <a href="/A156348/b156348.txt">Rows n = 1..125 of triangle, flattened</a> %H A156348 el Houcein el Abdalaoui, Mohamed Dahmoune and Djelloul Ziadi, <a href="http://arxiv.org/abs/1301.3751">On the transition reduction problem for finite automata</a>, arXiv preprint arXiv:1301.3751 [cs.FL], 2013. - From _N. J. A. Sloane_, Feb 12 2013 %H A156348 Jeff Ventrella, <a href="http://www.divisorplot.com">Divisor Plot</a> %H A156348 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %e A156348 Table begins: %e A156348 1 %e A156348 1 1 %e A156348 1 0 1 %e A156348 1 2 0 1 %e A156348 1 0 0 0 1 %e A156348 1 3 3 0 0 1 %e A156348 1 0 0 0 0 0 1 %e A156348 1 4 0 4 0 0 0 1 %e A156348 1 0 6 0 0 0 0 0 1 %e A156348 1 5 0 0 5 0 0 0 0 1 %e A156348 1 0 0 0 0 0 0 0 0 0 1 %e A156348 1 6 10 10 0 6 0 0 0 0 0 1 %e A156348 1 0 0 0 0 0 0 0 0 0 0 0 1 %e A156348 1 7 0 0 0 0 7 0 0 0 0 0 0 1 %e A156348 1 0 15 0 15 0 0 0 0 0 0 0 0 0 1 %e A156348 1 8 0 20 0 0 0 8 0 0 0 0 0 0 0 1 %e A156348 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 %e A156348 1 9 21 0 0 21 0 0 9 0 0 0 0 0 0 0 0 1 %e A156348 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 %e A156348 1 10 0 35 35 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1 %p A156348 A156348 := proc(n,k) %p A156348 if k < 1 or k > n then %p A156348 return 0 ; %p A156348 elif n mod k = 0 then %p A156348 binomial(n/k-2+k,k-1) ; %p A156348 else %p A156348 0 ; %p A156348 end if; %p A156348 end proc: # _R. J. Mathar_, Mar 03 2013 %t A156348 T[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0]; %t A156348 Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 16 2017 *) %o A156348 (Haskell) Following Mathar's Maple program. %o A156348 a156348 n k = a156348_tabl !! (n-1) !! (k-1) %o A156348 a156348_tabl = map a156348_row [1..] %o A156348 a156348_row n = map (f n) [1..n] where %o A156348 f n k = if r == 0 then a007318 (n' - 2 + k) (k - 1) else 0 %o A156348 where (n', r) = divMod n k %o A156348 -- _Reinhard Zumkeller_, Jan 31 2014 %Y A156348 Cf. A007318, A051731,A156834. %K A156348 nonn,tabl,easy,look %O A156348 1,8 %A A156348 _Mats Granvik_, Feb 08 2009