This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156365 #36 Sep 08 2022 08:45:41 %S A156365 1,1,1,2,1,8,4,1,22,44,8,1,52,264,208,16,1,114,1208,2416,912,32,1,240, %T A156365 4764,19328,19056,3840,64,1,494,17172,124952,249904,137376,15808,128, %U A156365 1,1004,58432,705872,2499040,2823488,934912,64256,256,1,2026,191360 %N A156365 T(n, k) = E(n, k)*2^k where E(n,k) are the Eulerian numbers A173018, for n > 0 and 0 <= k <= n-1, additionally T(0,0) = 1. %C A156365 Row sums are the Fubini numbers A000670. %C A156365 Except for the first term same as A142075. - _R. J. Mathar_, Feb 19 2009 %C A156365 By the definition of the Eulerian numbers it would be natural to add a 0 at the end of the rows if n > 0. - _Peter Luschny_, Sep 19 2015 %H A156365 G. C. Greubel, <a href="/A156365/b156365.txt">Rows n = 0..50 of the irregular triangle, flattened</a> %F A156365 Let p(x,n) = (1 - 2*x)^(n + 1) * Sum_{k>=0} 2^k*(k+1)^n*x^k = (1-2*x)^(1 + n)* polylogarithm(-n, 2*x)/(2*x) then T(n,m) are the coefficients of p(x,n). %F A156365 G.f.: 1/Q(0), where Q(k) = 1 + x*(k+1)/( 1 - y*2*x*(k+1)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Dec 17 2013 %e A156365 Triangle begins: %e A156365 1; %e A156365 1; %e A156365 1, 2; %e A156365 1, 8, 4; %e A156365 1, 22, 44, 8; %e A156365 1, 52, 264, 208, 16; %e A156365 1, 114, 1208, 2416, 912, 32; %e A156365 1, 240, 4764, 19328, 19056, 3840, 64; %e A156365 1, 494, 17172, 124952, 249904, 137376, 15808, 128; %e A156365 1, 1004, 58432, 705872, 2499040, 2823488, 934912, 64256, 256; %e A156365 1, 2026, 191360, 3641536, 20965664, 41931328, 29132288, 6123520, 259328, 512; %p A156365 A156365 := (n,k) -> combinat:-eulerian1(n,k)*2^k: %p A156365 for n from 0 to 15 do seq(A156365(n,k), k=0..n) od; # _Peter Luschny_, Sep 19 2015 %t A156365 (* First program *) %t A156365 p[x_, n_]= (1-2*x)^(n+1)*PolyLog[-n, 2*x]/(2*x); %t A156365 Table[CoefficientList[p[x, n], x], {n, 0, 10}] %t A156365 (* Second program: *) %t A156365 E1[n_ /; n >= 0, 0] = 1; E1[n_, k_] /; k<0 || k>n = 0; E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k]; %t A156365 T[0, 0] = 1; T[n_, k_]:= E1[n, k]*2^k; %t A156365 Table[T[n, k], {n, 0, 10}, {k, 0, Max[0, n-1]}]//Flatten (* _Jean-François Alcover_, Dec 30 2018, after _Peter Luschny_ *) %o A156365 (Magma) %o A156365 Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; %o A156365 A156365:= func< n,k | 2^k*Eulerian(n,k) >; %o A156365 [1] cat [A156365(n,k): k in [0..n-1], n in [0..12]]; // _G. C. Greubel_, Jun 05 2021 %o A156365 (Sage) %o A156365 @CachedFunction %o A156365 def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1)) %o A156365 def T(n,k): return 2^k*Eulerian(n,k) %o A156365 [1]+flatten([[T(n,k) for k in (0..n-1)] for n in (0..12)]) # _G. C. Greubel_, Jun 05 2021 %Y A156365 Cf. A000670, A142075, A173018. %K A156365 nonn,tabf %O A156365 0,4 %A A156365 _Roger L. Bagula_, Feb 08 2009 %E A156365 Edited and new name by _Peter Luschny_, Sep 19 2015