This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156430 #24 Feb 03 2025 21:36:49 %S A156430 1,2,10,12,84,132,954,1728,13290,26820,217500,481320,4086600,9783480, %T A156430 86549820,221921280,2037627900,5552479800,52745205240,151802154000, %U A156430 1487961422640,4500041903280,45412066438200,143712079822080,1490217165997560,4917227802767280 %N A156430 Number of n X n arrays of squares of integers, symmetric about both diagonal and antidiagonal, with all rows summing to 2. %H A156430 Albert Zhou, <a href="/A156430/a156430.pdf">Proof of recurrence</a> %F A156430 From _Albert Zhou_, Jan 26 2025: (Start) %F A156430 a(2*n) = a(2*(n-1)) + (n-1)*a(2*(n-2)) + 4*(n-1)*b(2*(n-1)) + 2*(n-1)*(n-2)*c(2*(n-1)), where %F A156430 b(2*n) = 2*a(2*(n-1)) + 2*(n-1)*b(2*(n-1)), and %F A156430 c(2*n) = 4*b(2*(n-1)) - 2*a(2*(n-2)) + 4*(n-2)*a(2*(n-3)) + 4*(n-2)*(n-3)*c(2*(n-2)), with %F A156430 a(0) = 1, a(2) = 1, a(4) = 10, and %F A156430 b(0) = 0, b(2) = 2, b(4) = 6, and %F A156430 c(0) = 0, c(2) = 1, c(6) = 6. %F A156430 a(2*n+1) = n*b(2*n). %F A156430 Proof attached. (End) %o A156430 (Python) %o A156430 # Even-dim bisymmetric %o A156430 A = [1, 1, 10] %o A156430 B = [0, 2, 6] %o A156430 C = [0, 1, 6] %o A156430 for n in range(3, 13): %o A156430 a_next = A[-1] + (n-1)*A[-2] + 4*(n-1)*B[-1] + 2*(n-1)*(n-2)*C[-1] %o A156430 b_next = 2*A[-1] + 2*(n-1)*B[-1] %o A156430 c_next = 4*B[-1] - 2*A[-2] + 4*(n-2)*A[-3] + 4*(n-2)*(n-3)*C[-2] %o A156430 A.append(a_next) %o A156430 B.append(b_next) %o A156430 C.append(c_next) %o A156430 # Odd-dim bisymmetric %o A156430 A_odd = [B[n]*n for n in range(len(B))] %o A156430 # _Albert Zhou_, Jan 26 2025 %Y A156430 Cf. A001499, A000986. %K A156430 nonn %O A156430 2,2 %A A156430 _R. H. Hardin_, Feb 09 2009 %E A156430 a(26)-a(27) from _Albert Zhou_, Jan 26 2025