This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156581 #7 Sep 08 2022 08:45:41 %S A156581 1,1,1,1,17,1,1,289,289,1,1,4913,83521,4913,1,1,83521,24137569, %T A156581 24137569,83521,1,1,1419857,6975757441,118587876497,6975757441, %U A156581 1419857,1,1,24137569,2015993900449,582622237229761,582622237229761,2015993900449,24137569,1 %N A156581 Triangle T(n, k, m) = (m+2)^(k*(n-k)) with m = 15, read by rows. %H A156581 G. C. Greubel, <a href="/A156581/b156581.txt">Rows n = 0..50 of the triangle, flattened</a> %F A156581 T(n, k, m) = b(n, m)/(b(k, m)*b(n-k, m)) with b(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} binomial(j-1, i)*(k+1)^i ), b(n, 0) = n!, and m = 15. %F A156581 T(n, k, m) = (m+2)^(k*(n-k)) with m = 15. - _G. C. Greubel_, Jun 28 2021 %e A156581 Triangle begins as: %e A156581 1; %e A156581 1, 1; %e A156581 1, 17, 1; %e A156581 1, 289, 289, 1; %e A156581 1, 4913, 83521, 4913, 1; %e A156581 1, 83521, 24137569, 24137569, 83521, 1; %e A156581 1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1; %t A156581 (* First program *) %t A156581 b[n_, k_]:= b[n, k]= If[k==0, n!, Product[Sum[Binomial[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, n}]]; %t A156581 T[n_, k_, m_]:= T[n, k, m]= b[n, m]/(b[k, m]*b[n-k, m]); %t A156581 Table[T[n, k, 15], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 28 2021 *) %t A156581 (* Second program *) %t A156581 T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,15], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 28 2021 *) %o A156581 (Magma) %o A156581 A156581:= func< n,k,m | (m+2)^(k*(n-k)) >; %o A156581 [A156581(n,k,15): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 28 2021 %o A156581 (Sage) %o A156581 def A156581(n,k,m): return (m+2)^(k*(n-k)) %o A156581 flatten([[A156581(n,k,15) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 28 2021 %Y A156581 Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), this sequence (m=15). %K A156581 nonn,tabl %O A156581 0,5 %A A156581 _Roger L. Bagula_, Feb 10 2009 %E A156581 Edited by _G. C. Greubel_, Jun 28 2021