This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156588 #5 Dec 09 2016 06:16:07 %S A156588 1,1,1,1,-1,2,1,-1,2,6,1,-1,3,-12,24,1,-1,4,-36,288,120,1,-1,5,-80, %T A156588 2160,-34560,720,1,-1,6,-150,9600,-777600,24883200,5040,1,-1,7,-252, %U A156588 31500,-8064000,1959552000,-125411328000,40320,1,-1,8,-392,84672,-52920000 %N A156588 A triangle of q factorial type based on Stirling first polynomials: t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]. %C A156588 Row sums are: %C A156588 {1, 2, 2, 8, 15, 376, -31755, 24120096, -123459768425, 5017134314247168, %C A156588 -1827769039991244222327,...}. %F A156588 t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; %F A156588 out_(n,k)=Antidiagonal(t(n,k)). %e A156588 {1}, %e A156588 {1, 1}, %e A156588 {1, -1, 2}, %e A156588 {1, -1, 2, 6}, %e A156588 {1, -1, 3, -12, 24}, %e A156588 {1, -1, 4, -36, 288, 120}, %e A156588 {1, -1, 5, -80, 2160, -34560, 720}, %e A156588 {1, -1, 6, -150, 9600, -777600, 24883200, 5040}, %e A156588 {1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320}, %e A156588 {1, -1, 8, -392, 84672, -52920000, 54190080000, -39504568320000, 5056584744960000, 362880}, %e A156588 {1, -1, 9, -576, 197568, -256048128, 800150400000, -3277416038400000, 7167708875980800000, -1834933472251084800000, 3628800} %t A156588 Clear[t, n, m, i, k, a, b]; %t A156588 t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; %t A156588 a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}]; %t A156588 b = Table[Table[a[[m, n - m + 1]], {m, n, 1, -1}], {n, 1, Length[a]}]; %t A156588 Flatten[%] %Y A156588 A009963 %K A156588 sign,tabl,uned %O A156588 0,6 %A A156588 _Roger L. Bagula_, Feb 10 2009