cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156600 Triangle T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 6, read by rows.

This page as a plain text file.
%I A156600 #7 Jun 25 2021 23:14:47
%S A156600 1,1,1,1,-5,1,1,24,24,1,1,-115,552,-115,1,1,551,12673,12673,551,1,1,
%T A156600 -2640,290928,-1394030,290928,-2640,1,1,12649,6678672,153331178,
%U A156600 153331178,6678672,12649,1,1,-60605,153318529,-16865038190,80805530806,-16865038190,153318529,-60605,1
%N A156600 Triangle T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 6, read by rows.
%H A156600 G. C. Greubel, <a href="/A156600/b156600.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A156600 T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 6.
%e A156600 Triangle begins as:
%e A156600   1;
%e A156600   1,     1;
%e A156600   1,    -5,       1;
%e A156600   1,    24,      24,         1;
%e A156600   1,  -115,     552,      -115,         1;
%e A156600   1,   551,   12673,     12673,       551,       1;
%e A156600   1, -2640,  290928,  -1394030,    290928,   -2640,     1;
%e A156600   1, 12649, 6678672, 153331178, 153331178, 6678672, 12649, 1;
%t A156600 (* First program *)
%t A156600 b[n_, k_]:= If[k==n, 2, If[k==n-1 || k==n+1, -1, 0]];
%t A156600 M[d_]:= Table[b[n, k], {n,d}, {k,d}];
%t A156600 p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
%t A156600 f= Table[p[x, n], {n,0,20}];
%t A156600 t[n_, k_]:= If[k==0, n!, Product[f[[j]], {j, n}]/.x->(k+1)];
%t A156600 T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
%t A156600 Table[T[n, k, 6], {n,0,12}, {k,0,n}]//TableForm (* modified by _G. C. Greubel_, Jun 25 2021 *)
%t A156600 (* Second program *)
%t A156600 t[n_, k_]:= t[n, k]= If[n==0, 1, If[k==0, (n-1)!, Product[(-1)^j*Simplify[ChebyshevU[j, x/2 - 1]], {j,0,n-1}]/.x->(k+1)]];
%t A156600 T[n_, k_, m_]:= T[n, k, m]= t[n, m]/(t[k, m]*t[n-k, m]);
%t A156600 Table[T[n, k, 6], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 25 2021 *)
%o A156600 (Sage)
%o A156600 @CachedFunction
%o A156600 def t(n, k):
%o A156600     if (n==0): return 1
%o A156600     elif (k==0): return factorial(n-1)
%o A156600     else: return product( (-1)^j*chebyshev_U(j, (k-1)/2) for j in (0..n-1) )
%o A156600 def T(n,k,m): return t(n,m)/(t(k,m)*t(n-k,m))
%o A156600 flatten([[T(n, k, 6) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 25 2021
%Y A156600 Cf. A007318 (m=0), A034801 (m=4), A156599 (m=5), this sequence (m=6), A156601 (m=7), A156602 (m=8), A156603.
%Y A156600 Cf. A053122.
%K A156600 sign,tabl
%O A156600 0,5
%A A156600 _Roger L. Bagula_, Feb 11 2009
%E A156600 Edited by _G. C. Greubel_, Jun 25 2021