A156604 a(1)=2; for n > 0, a(n+1) is the smallest prime of A046704 larger than a(n) such that the sequence of digit sums of a(n) is nondecreasing.
2, 3, 5, 7, 29, 47, 67, 89, 179, 197, 199, 379, 397, 487, 577, 599, 797, 887, 977, 1499, 1697, 1787, 1877, 1949, 2399, 2579, 2687, 2777, 2939, 2957, 2999, 3989, 4799, 4889, 4999, 6997, 7699, 7789, 7879, 8599, 8689, 8779, 8887, 9679, 9697, 9769, 9787, 9859
Offset: 1
Examples
The first several terms after a(1)=2 are 3 (3 > 2); 5 (5 > 3); 7 (7 > 5); 29 (2 + 9 > 7); 47 (4 + 7 = 2 + 9); 67 (6 + 7 > 4 + 9); 89 (8 + 9 > 6 + 7); 179 (1 + 7 + 9 = 8 + 9); 197 (1 + 9 + 7 = 8 + 9).
Programs
-
Maple
A007953 := proc(n) local d ; add(d,d= convert(n,base,10)) ; end proc: isA046704 := proc(n) isprime(n) and isprime(A007953(n)) ; end proc: A156604 := proc(n) option remember ; local psprev,i ; if n = 1 then 2 ; else psprev := A007953(procname(n-1)) ; for i from procname(n-1)+1 do if isA046704(i) then if A007953(i) >= psprev then return i ; end if; end if; end do: end if ; end proc: seq(A156604(n),n=1..80) ; # R. J. Mathar, Mar 18 2010 From R. J. Mathar, Mar 29 2010: (Start) A007953 := proc(n) add(d, d= convert(n,base,10)) ; end proc: isA028834 := proc(n) local d; add(d, d= convert(n,base,10)) ; isprime(%) ; end proc: isA046704 := proc(n) isprime(n) and isA028834(n) ; end proc: A156604 := proc(n) option remember; if n = 1 then 2; else for a from procname(n-1)+1 do if isA046704(a) and A007953(a) >= A007953(procname(n-1)) then return a; end if; end do: end if; end proc: seq(A156604(n),n=1..100) ; (End)
Extensions
Definition, terms and examples corrected by R. J. Mathar, Mar 18 2010
179 and 1877 inserted, and 9 terms after 4889 replaced with the single term 4999, by R. J. Mathar, Mar 29 2010
Comments