This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156608 #12 Jun 25 2021 03:35:33 %S A156608 1,1,1,1,-1,1,1,1,1,1,1,1,-1,1,1,1,-2,2,2,-2,1,1,1,2,2,2,1,1,1,1,-1,2, %T A156608 2,-1,1,1,1,-2,2,2,-4,2,2,-2,1,1,1,2,2,2,2,2,2,1,1,1,1,-1,2,2,-1,2,2, %U A156608 -1,1,1 %N A156608 Triangle T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 2, read by rows. %C A156608 The original definition of this sequence said it was based on the Cartan matrix of type D_n, so that matrix is somehow implicitly involved. - _N. J. A. Sloane_, Jun 25 2021 %H A156608 G. C. Greubel, <a href="/A156608/b156608.txt">Rows n = 0..100 of the triangle, flattened</a> %F A156608 T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 2. %e A156608 Triangle begins: %e A156608 1; %e A156608 1, 1; %e A156608 1, -1, 1; %e A156608 1, 1, 1, 1; %e A156608 1, 1, -1, 1, 1; %e A156608 1, -2, 2, 2, -2, 1; %e A156608 1, 1, 2, 2, 2, 1, 1; %e A156608 1, 1, -1, 2, 2, -1, 1, 1; %e A156608 1, -2, 2, 2, -4, 2, 2, -2, 1; %e A156608 1, 1, 2, 2, 2, 2, 2, 2, 1, 1; %e A156608 1, 1, -1, 2, 2, -1, 2, 2, -1, 1, 1; %t A156608 (* First program *) %t A156608 b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]]; %t A156608 M[d_]:= Table[b[n, k, d], {n, d}, {k, d}]; %t A156608 p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]]; %t A156608 f = Table[p[x, n], {n, 0, 20}]; %t A156608 t[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1; %t A156608 T[n_, k_, m_]:= Round[t[n, m]/(t[k, m]*t[n-k, m])]; %t A156608 Table[T[n, k, 2], {n,0,15}, {k, 0, n}]//Flatten (* modified by _G. C. Greubel_, Jun 23 2021 *) %t A156608 (* Second program *) %t A156608 f[n_, x_]:= f[n,x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]] ]; %t A156608 t[n_, k_]:= t[n,k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1); %t A156608 T[n_, k_, m_]:= T[n,k,m]= Round[t[n,m]/(t[k,m]*t[n-k,m])]; %t A156608 Table[T[n, k, 2], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 23 2021 *) %o A156608 (Sage) %o A156608 @CachedFunction %o A156608 def f(n,x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) ) %o A156608 def g(n,k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) ) %o A156608 def T(n,k,m): return round( g(n,m)/(g(k,m)*g(n-k,m)) ) %o A156608 flatten([[T(n,k,2) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Jun 23 2021 %Y A156608 Cf. A129862, A007318 (m=0), this sequence (m=2), A156609 (m=3), A156610 (m=4), A156612. %K A156608 sign,tabl %O A156608 0,17 %A A156608 _Roger L. Bagula_, Feb 11 2009 %E A156608 Edited by _G. C. Greubel_, Jun 23 2021