This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156644 #22 Mar 01 2021 02:02:19 %S A156644 1,0,1,-1,1,1,-2,0,2,1,-3,-2,2,3,1,-4,-5,0,5,4,1,-5,-9,-5,5,9,5,1,-6, %T A156644 -14,-14,0,14,14,6,1,-7,-20,-28,-14,14,28,20,7,1,-8,-27,-48,-42,0,42, %U A156644 48,27,8,1,-9,-35,-75,-90,-42,42,90,75,35,9,1 %N A156644 Mirror image of triangle A080233. %C A156644 Inverse of A239473. Equals A007318*A167374. - _Tom Copeland_, Nov 14 2016 %H A156644 G. C. Greubel, <a href="/A156644/b156644.txt">Rows n = 0..50 of the triangle, flattened</a> %F A156644 T(n,k) = A080233(n,n-k) = (-1)^(n-k)*A097808(n,k). %F A156644 T(n,k) = ((2*k-n+1)/(k+1))*binomial(n,k). %F A156644 T(n,k) = T(n-1,k-1) + T(n-1,k), k>0, with T(n,0) = 1-n = A024000(n), T(n,n) = 1. %F A156644 T(n,k) = binomial(n,k) - binomial(n,k+1) = Sum_{i=-k-1..k+1} (-1)^(i+1) * binomial(n,k+1+i) * binomial(n+2,k+1-i). - _Mircea Merca_, Apr 28 2012 %F A156644 Sum_{k=0..n} T(n, k) = A000012(n) = 1^n. - _G. C. Greubel_, Feb 28 2021 %e A156644 Triangle begins as: %e A156644 1; %e A156644 0, 1; %e A156644 -1, 1, 1; %e A156644 -2, 0, 2, 1; %e A156644 -3, -2, 2, 3, 1; %e A156644 -4, -5, 0, 5, 4, 1; ... %t A156644 Table[Binomial[n, k] -Binomial[n, k+1], {n,0,10}, {k,0,n}]//Flatten (* _Michael De Vlieger_, Nov 24 2016 *) %o A156644 (Sage) %o A156644 def A156644(n,k): return ((2*k-n+1)/(k+1))*binomial(n,k) %o A156644 flatten([[A156644(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 28 2021 %o A156644 (Magma) %o A156644 A156644:= func< n,k | ((2*k-n+1)/(k+1))*Binomial(n,k) >; %o A156644 [A156644(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 28 2021 %Y A156644 Cf. A024000, A080956, A097808, A120730. %Y A156644 Cf. A007318, A167374, A239473. %K A156644 sign,tabl %O A156644 0,7 %A A156644 _Philippe Deléham_, Feb 12 2009