A156648 Decimal expansion of Product_{k>=1} (1 + 1/k^2).
3, 6, 7, 6, 0, 7, 7, 9, 1, 0, 3, 7, 4, 9, 7, 7, 7, 2, 0, 6, 9, 5, 6, 9, 7, 4, 9, 2, 0, 2, 8, 2, 6, 0, 6, 6, 6, 5, 0, 7, 1, 5, 6, 3, 4, 6, 8, 2, 7, 6, 3, 0, 2, 7, 7, 4, 7, 8, 0, 0, 3, 5, 9, 3, 5, 5, 7, 4, 4, 7, 3, 2, 4, 1, 1, 1, 0, 2, 2, 0, 7, 3, 2, 1, 3, 2, 5, 5, 9, 2, 6, 5, 9, 0, 3, 2, 3, 0, 2, 3, 5, 2, 8, 7, 5
Offset: 1
Examples
3.676077910374977720695697492028260666507156346827630277478003593557447324111... = (1+1)*(1+1/4)*(1+1/9)*(1+1/16)*(1+1/25)*...
References
- Reinhold Remmert, Classical topics in complex function theory, Vol. 172 of Graduate Texts in Mathematics, p. 12, Springer, 1997.
Links
- Robert Schneider, Eulerian series, zeta functions and the arithmetic of partitions, arXiv:2008.04243 [math.NT], 2020.
Crossrefs
Programs
-
Maple
evalf(sinh(Pi)/Pi) ;
-
Mathematica
RealDigits[Sinh[Pi]/Pi, 10, 111][[1]] (* or *) RealDigits[Re[1/(I!*(-I)!)], 10, 111][[1]] (* Robert G. Wilson v, Feb 23 2015 *)
-
PARI
sinh(Pi)/Pi \\ Charles R Greathouse IV, Dec 16 2013
-
PARI
prodnumrat(1 + 1/x^2, 1) \\ Charles R Greathouse IV, Feb 03 2025
Formula
Equals sinh(Pi)/Pi.
Equals 1/A090986. - R. J. Mathar, Mar 05 2009
Binomial(2, 1+i) = 1/(i!*(-i)!) (where x! means Gamma(x+1)). - Robert G. Wilson v, Feb 23 2015
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(2*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{k>=1} (1+2/(k*(k+2))). - Amiram Eldar, Aug 16 2020
Comments