This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156658 #21 Jul 22 2020 11:39:23 %S A156658 2,3,5,7,11,23,29,41,47,53,59,83,89,107,113,131,167,173,179,191,227, %T A156658 233,239,251,263,281,293,347,359,383,419,431,443,467,479,491,503,509, %U A156658 563,587,593,641,653,659,683,719,743,761,809,839,863,887,911,953,983,1013 %N A156658 Primes p such that also 2*p+1 or (p-1)/2 is prime. %C A156658 Union of A005384 and A005385; %C A156658 The intersection of A005384 and A005385 is given by A059455. %C A156658 A156660(a(n)) + A156659(a(n)) > 0; %C A156658 primes occurring in Cunningham chains of the first kind. %C A156658 A156876 gives the number of these numbers <= n. [_Reinhard Zumkeller_, Feb 18 2009] %H A156658 Robert Price, <a href="/A156658/b156658.txt">Table of n, a(n) for n = 1..14198</a> %H A156658 Wikipedia, <a href="http://en.wikipedia.org/wiki/Sophie_Germain_prime">Sophie Germain prime</a> %H A156658 Wikipedia, <a href="http://en.wikipedia.org/wiki/Safe_prime">Safe prime</a> %H A156658 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cunningham_chain">Cunningham chain</a> %p A156658 select(t -> isprime(t) and (isprime(2*t+1) or isprime((t-1)/2)), [2,seq(p,p=3..10000,2)]); # _Robert Israel_, May 03 2016 %t A156658 Select[Prime@ Range@ 180, PrimeQ[2 # + 1] || PrimeQ[(# - 1)/2] &] (* _Michael De Vlieger_, Apr 06 2016 *) %o A156658 (PARI) lista(nn) = {forprime(p=2, nn, if (isprime(2*p+1) || isprime((p-1)/2), print1(p, ", ")););} \\ _Michel Marcus_, Apr 06 2016 %Y A156658 Cf. A005384, A005385, A059500, A156659, A156660, A156876. %K A156658 nonn %O A156658 1,1 %A A156658 _Reinhard Zumkeller_, Feb 13 2009