This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156663 #17 Aug 27 2021 16:40:16 %S A156663 1,0,1,2,0,1,0,2,0,1,4,0,2,0,1,0,4,0,2,0,1,8,0,4,0,2,0,1,0,8,0,4,0,2, %T A156663 0,1,16,0,8,0,4,0,2,0,1,0,16,0,8,0,4,0,2,0,1,32,0,16,0,8,0,4,0,2,0,1, %U A156663 0,32,0,16,0,8,0,4,0,2,0,1 %N A156663 Triangle by columns, powers of 2 interleaved with zeros. %C A156663 Eigensequence of the triangle = A001045. %H A156663 D. E. Davenport, L. W. Shapiro and L. C. Woodson, <a href="https://doi.org/10.37236/2034">The Double Riordan Group</a>, The Electronic Journal of Combinatorics, 18(2) (2012). %F A156663 Triangle by columns, (1, 0, 2, 0, 4, 0, 8, ...) in every column. %F A156663 From _Peter Bala_, Aug 15 2021: (Start) %F A156663 T(n,k) = sqrt(2)^((n - k)/2) * (1 + (-1)^(n-k))/2 for 0 <= k <= n. %F A156663 Double Riordan array (1/(1 - 2*x^2); x, x) as defined in Davenport et al. %F A156663 The m-th power of the array is the double Riordan array (1/(1 - 2*x^2)^(m); x, x). Cf. A158944. (End) %e A156663 First few rows of the triangle = %e A156663 1; %e A156663 0, 1; %e A156663 2, 0, 1; %e A156663 0, 2, 0, 1; %e A156663 4, 0, 2, 0, 1; %e A156663 0, 4, 0, 2, 0, 1; %e A156663 8, 0, 4, 0, 2, 0, 1; %e A156663 0, 8, 0, 4, 0, 2, 0, 1; %e A156663 16, 0, 8, 0, 4, 0, 2, 0, 1; %e A156663 0, 16, 0, 8, 0, 4, 0, 2, 0, 1; %e A156663 32, 0, 16, 0, 8, 0, 4, 0, 2, 0, 1; %e A156663 0, 32, 0, 16, 0, 8, 0, 4, 0, 2, 0, 1; %e A156663 ... %e A156663 The inverse array begins %e A156663 1; %e A156663 0, 1; %e A156663 -2, 0, 1; %e A156663 0, -2, 0, 1; %e A156663 0, 0, -2, 0, 1; %e A156663 0, 0, 0, -2, 0, 1; %e A156663 0, 0, 0, 0, -2, 0, 1; %e A156663 0, 0, 0, 0, 0, -2, 0, 1; %e A156663 0, 0, 0, 0, 0, 0, -2, 0, 1; %e A156663 ... - _Peter Bala_, Aug 15 2021 %p A156663 seq(seq( sqrt(2)^(n-k) * (1 + (-1)^(n-k))/2, k = 0..n), n = 0..10) # _Peter Bala_, Aug 15 2021 %Y A156663 Cf. A001045, A158944. %K A156663 nonn,tabl %O A156663 0,4 %A A156663 _Gary W. Adamson_, Feb 12 2009 %E A156663 Typo in Data corrected by _Peter Bala_, Aug 15 2021