This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156667 #5 May 08 2022 21:05:49 %S A156667 1,0,1,2,0,1,0,2,0,3,4,0,2,0,5,0,4,0,6,0,11,8,0,4,0,10,0,21,0,8,0,12, %T A156667 0,22,0,43,16,0,8,0,20,0,42,0,85,0,16,0,24,0,44,0,86,0,171,32,0,16,0, %U A156667 40,0,84,0,170,0,341 %N A156667 Triangle read by rows, A156663 * (A001045 * 0^(n-k)). %C A156667 Row sums = A001045 starting with offset 1: (1, 1, 3, 5, 11, 21, 43, ...). %C A156667 As an eigentriangle, row sums = rightmost term of next row. %F A156667 Triangle read by rows, A156663 * (an infinite lower triangular matrix with A001045 as the main diagonal and the rest zeros). %e A156667 First few rows of the triangle = %e A156667 1; %e A156667 0, 1; %e A156667 2, 0, 1; %e A156667 0, 2, 0, 3; %e A156667 4, 0, 2, 0, 5; %e A156667 0, 4, 0, 6, 0, 11; %e A156667 8, 0, 4, 0, 10, 0, 21; %e A156667 0, 8, 0, 12, 0, 22, 0, 43; %e A156667 16, 0, 8, 0, 20, 0, 42, 0, 85; %e A156667 0, 16, 0, 24, 0, 44, 0, 86, 0, 171; %e A156667 32, 0, 16, 0, 40, 0, 84, 0, 170, 0, 341; %e A156667 0, 32, 0, 48, 0, 88, 0, 172, 0, 342, 0, 683; %e A156667 ... %e A156667 Row 4 = (4, 0, 2, 0, 5) = termwise products of (4, 0, 2, 0, 1) and (1, 1, 1, 3, 5) %Y A156667 Cf. A156663, A001045. %K A156667 nonn,tabl %O A156667 0,4 %A A156667 _Gary W. Adamson_, Feb 12 2009