This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156682 #10 Jul 07 2016 23:48:48 %S A156682 5,13,10,25,17,15,41,26,61,20,37,85,50,25,39,113,34,65,145,30,82,181, %T A156682 29,52,101,35,75,221,122,265,40,51,74,145,65,313,170,45,123,365,53, %U A156682 100,197,421,50,78,226,481,68,130,257,55,65,183,545,290,91,125,613,60,85,111 %N A156682 Consider all Pythagorean triangles A^2 + B^2 = C^2 with A<B<C; sequence gives values of C, sorted to correspond to increasing A (A009004(n)). %C A156682 The corresponding sequence for primitive triples is A156679. For all triples, the ordered sequence of C values is A020882 (allowing repetitions) and A009003 (excluding repetitions). %D A156682 Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134. %D A156682 Sierpinski, W.; Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003. %H A156682 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Right-angled Triangles and Pythagoras' Theorem</a> %F A156682 a(n) = sqrt(A009004(n)^2 + A156681(n)^2). %e A156682 As the first four Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (6,8,10) and (7,24,25), then a(1)=5, a(2)=13, a(3)=10 and a(4)=25. %t A156682 PythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[i<n,h=Sqrt[i^2+j^2];If[IntegerQ[h] && j<n,AppendTo[t,{i,j,h}]]; If[j<n,j++,i++;j=i+1]];t];k=20;data1=PythagoreanTriplets[2k^2+2k+1];data2=Select[data1,#[[1]]<=2k+1 &];#[[3]] &/@data2 %Y A156682 Cf. A009004, A156681, A156679, A020882, A009003. %K A156682 easy,nice,nonn %O A156682 1,1 %A A156682 _Ant King_, Feb 17 2009