This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156695 #67 Apr 19 2025 03:29:22 %S A156695 1,3,5,6495105,848629545,1117175145,2544265305,3147056235,3366991695, %T A156695 3472109835,3621922845,3861518805,4447794915,4848148485,5415281745, %U A156695 5693877405,6804302445,7525056375,7602256605,9055691835,9217432215 %N A156695 Odd numbers that are not of the form p + 2^a + 2^b, a, b > 0, p prime. %C A156695 Crocker shows that this sequence is infinite. %C A156695 All members above 5 found so far (up to 2.5 * 10^11) are divisible by 255 = 3 * 5 * 17, and many are divisible by 257. I conjecture that all members of this sequence greater than 5 are divisible by 255. This implies that all odd numbers (greater than 7) are the sum of a prime and at most three positive powers of two. %C A156695 Pan shows that, for every c > 1, a(n) << x^c. More specifically, there are constants C,D > 0 such that there are at least Dx/exp(C log x log log log log x/log log log x) members of this sequence up to x. - _Charles R Greathouse IV_, Apr 11 2016 %C A156695 All terms > 5 are numbers k > 3 such that k - 2^n is a de Polignac number (A006285) for every n > 0 with 2^n < k. Are there numbers K such that |K - 2^n| is a Riesel number (A101036) for every n > 0? If so, ||K - 2^n| - 2^m| is composite for every pair m,n > 0, by the dual Riesel conjecture. - _Thomas Ordowski_, Jan 06 2024 %C A156695 In keeping with the example's connection to A000215, the lowest ki for ki * Product_{i=0..11} (F(i)) to belong to A156695 are 1, 433007, 25471, 17047, 1291, 7, 101, 807, 83, 347, 9, 179. So for example, 433007*(3*5) is a term. This implies a variant of the first commented conjecture accordingly. - _Bill McEachen_, Apr 17 2025 %H A156695 Giovanni Resta, <a href="/A156695/b156695.txt">Table of n, a(n) for n = 1..233</a> (terms < 10^12) %H A156695 Roger Crocker, "<a href="http://projecteuclid.org/euclid.pjm/1102971271">On the sum of a prime and of two powers of two</a>", Pacific Journal of Mathematics 36:1 (1971), pp. 103-107. %H A156695 Roger Crocker, <a href="/A156695/a156695.pdf">Some counter-examples in the additive theory of numbers</a>, Master's thesis (Ohio State University), 1962. %H A156695 Hao Pan, <a href="http://arxiv.org/abs/0905.3809">On the integers not of the form p + 2^a + 2^b</a>. arXiv:0905.3809 [math.NT], 2009. %H A156695 Zhi-Wei Sun, <a href="http://math.nju.edu.cn/~zwsun/MSPT.htm">Mixed sums of primes and other terms</a> (2009-2010). %e A156695 Prime factorization of terms: %e A156695 F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257 are Fermat numbers (cf. A000215) %e A156695 6495105 = 3 * 5 * 17 * 25471 %e A156695 848629545 = 3 * 5 * 17 * 461 * 7219 %e A156695 1117175145 = 3 * 5 * 17 * 257 * 17047 %e A156695 2544265305 = 3^2 * 5 * 17 * 257 * 12941 %e A156695 3147056235 = 3^2 * 5 * 17 * 257 * 16007 %e A156695 3366991695 = 3 * 5 * 17 * 83 * 257 * 619 %e A156695 3472109835 = 3 * 5 * 17 * 257 * 52981 %e A156695 3621922845 = 3 * 5 * 17^2 * 257 * 3251 %e A156695 3861518805 = 3^3 * 5 * 17 * 257 * 6547 %e A156695 4447794915 = 3^3 * 5 * 17 * 257 * 7541 %e A156695 4848148485 = 3^4 * 5 * 17 * 704161 %e A156695 5415281745 = 3 * 5 * 17 * 21236399 %e A156695 5693877405 = 3^2 * 5 * 17 * 257 * 28961 %e A156695 6804302445 = 3^2 * 5 * 17 * 53 * 257 * 653 %e A156695 7525056375 = 3^2 * 5^3 * 17 * 257 * 1531 %e A156695 7602256605 = 3 * 5 * 17 * 257 * 311 * 373 %e A156695 9055691835 = 3 * 5 * 17 * 257 * 138181 %e A156695 9217432215 = 3^2 * 5 * 17 * 173 * 257 * 271 %o A156695 (PARI) is(n)=if(n%2==0,return(0)); for(a=1,log(n)\log(2), for(b=1,a, if(isprime(n-2^a-2^b),return(0)))); 1 \\ _Charles R Greathouse IV_, Nov 27 2013 %o A156695 (Python) %o A156695 from itertools import count, islice %o A156695 from sympy import isprime %o A156695 def A156695_gen(startvalue=1): # generator of terms >= startvalue %o A156695 for n in count(max(startvalue+(startvalue&1^1),1),2): %o A156695 l = n.bit_length()-1 %o A156695 for a in range(l,0,-1): %o A156695 c = n-(1<<a) %o A156695 for b in range(min(a,l-1),0,-1): %o A156695 if isprime(c-(1<<b)): %o A156695 break %o A156695 else: %o A156695 continue %o A156695 break %o A156695 else: %o A156695 yield n %o A156695 A156695_list = list(islice(A156695_gen(),4)) # _Chai Wah Wu_, Nov 29 2023 %Y A156695 Cf. A006285, A118955, A232565, A337487. %K A156695 nonn,hard,nice %O A156695 1,2 %A A156695 _Charles R Greathouse IV_, Feb 13 2009 %E A156695 Factorizations added by _Daniel Forgues_, Jan 20 2011