A156709 For all numbers k(n) congruent to -1 or +1 (mod 6) starting with k(n) = {5,7,11,13,...}, a(k(n)) is incremented by the congruence (mod 6) if k(n) is prime and by 0 if k(n) is composite.
-1, 0, -1, 0, -1, 0, -1, -1, -2, -1, -1, 0, -1, 0, -1, -1, -2, -2, -3, -2, -2, -1, -2, -1, -1, 0, -1, -1, -2, -2, -2, -1, -2, -1, -2, -1, -2, -2, -2, -2, -2, -1, -2, -2, -3, -2, -2, -2, -3, -2, -2, -1, -1, 0, -1, -1, -2, -2, -3, -2, -2, -2, -3, -2, -3, -2, -2, -2, -2, -1, -1, -1, -1
Offset: 1
Keywords
References
- R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7
Links
- Daniel Forgues, Table of n, a(n) for n = 1..33332
- Andrew Granville and Greg Martin, Prime Number Races, arXiv:math/0408319 [math.NT], 2004.
- Eric Weisstein, Chebyshev Bias
- Wikipedia, Pink noise
Crossrefs
Cf. A156706 (whose sum of first n terms gives a(n)).
Cf. A156749 (which exhibits the Chebyshev Bias for congruences -1 or +1 (mod 4)).
Cf. A075743 (prime characteristic function of numbers congruent to -1 or +1 (mod 6)).
Cf. A101264 (prime characteristic function of numbers congruent to -1 or +1 (mod 4)).
Comments