This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156712 #52 Jul 10 2025 06:23:21 %S A156712 1,7,91,1261,17557,244531,3405871,47437657,660721321,9202660831, %T A156712 128176530307,1785268763461,24865586158141,346332937450507, %U A156712 4823795538148951,67186804596634801,935791468814738257,13033893758809700791,181538721154521072811,2528508202404485318557 %N A156712 Star numbers (A003154) that are also triangular numbers (A000217). %C A156712 From _Colin Barker_, Jan 06 2015: (Start) %C A156712 Also indices of centered square numbers (A001844) which are also centered triangular numbers (A005448). %C A156712 Also indices of centered octagonal numbers (A016754) which are also centered hexagonal numbers (A003215). %C A156712 Also positive integers y in the solutions to 3*x^2-4*y^2-3*x+4*y = 0, the corresponding values of x being A001922. %C A156712 (End) %H A156712 Colin Barker, <a href="/A156712/b156712.txt">Table of n, a(n) for n = 1..875</a> %H A156712 Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, <a href="http://dx.doi.org/10.13140/RG.2.2.16511.73129">Lune and Lens Sequences</a>, ResearchGate preprint, 2024. See pp. 30, 56. %H A156712 Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2016volume16/FG2016volume16.pdf#page=423">Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences</a>, Forum Geometricorum, Volume 16 (2016) 419-427. %H A156712 Wikipedia, <a href="http://en.wikipedia.org/wiki/Star_number">Star Numbers</a> %H A156712 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15,-15,1). %F A156712 a(n+3) = 15*a(n+2) - 15*a(n+1) + a(n). %F A156712 If x^2 - 3*y^2 = 1 with x even then a(y) = (y+2)/4 evidently related to A001570 by: add 1 and halve. %F A156712 G.f.: x*(1 - 8*x + x^2)/((1-x)*(1 - 14*x + x^2)). - _Alexander R. Povolotsky_, Feb 15 2009 %F A156712 a(n) = (4 + (2 + sqrt(3))*(7 - 4*sqrt(3))^n + (2 - sqrt(3))*(7 + 4*sqrt(3))^n)/8. - _Colin Barker_, Mar 05 2016 %F A156712 a(n) = (1/2)*( 1 + ChebyshevU(n, 7) - 13*ChebyshevU(n-1, 7) ). - _G. C. Greubel_, Oct 07 2022 %p A156712 f:= gfun[rectoproc]({a(n+3)=15*a(n+2)-15*a(n+1)+a(n),a(1)=1,a(2)=7,a(3)=91},a(n),'remember'): %p A156712 seq(f(n), n=1..30); # _Robert Israel_, Jan 01 2015 %t A156712 f[n_] := (Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)] + 4)/8; Array[f, 17] (* _Robert G. Wilson v_, Oct 28 2010 *) %o A156712 (PARI) Vec(-x*(x^2-8*x+1)/((x-1)*(x^2-14*x+1)) + O(x^100)) \\ _Colin Barker_, Jan 01 2015 %o A156712 (Magma) [(Evaluate(ChebyshevSecond(n+1),7) - 13*Evaluate(ChebyshevU(n), 7) + 1)/2: n in [1..30]]; // _G. C. Greubel_, Oct 07 2022 %o A156712 (SageMath) %o A156712 def A156712(n): return (1 + chebyshev_U(n, 7) - 13*chebyshev_U(n-1, 7))/2 %o A156712 [A156712(n) for n in range(1,31)] # _G. C. Greubel_, Oct 07 2022 %Y A156712 Cf. A000217, A001570, A001844, A001922, A003154. %Y A156712 Cf. A003215, A005448, A007655, A016754. %K A156712 easy,nonn %O A156712 1,2 %A A156712 _Aaron Meyerowitz_, Feb 14 2009 %E A156712 a(11) onwards from _Robert G. Wilson v_, Oct 28 2010