This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156763 #11 Sep 08 2022 08:45:41 %S A156763 2,3,3,7,12,7,21,42,42,21,71,160,180,160,71,253,660,770,770,660,253, %T A156763 925,2814,3570,3360,3570,2814,925,3433,12068,17388,15750,15750,17388, %U A156763 12068,3433,12871,51552,85344,81312,69300,81312,85344,51552,12871 %N A156763 Triangle T(n, k) = binomial(2*k, k)*binomial(n+k, n-k) + binomial(2*n-k, k)*binomial(2*(n-k), n-k), read by rows. %D A156763 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 66. %H A156763 G. C. Greubel, <a href="/A156763/b156763.txt">Rows n = 0..50 of the triangle, flattened</a> %F A156763 T(n, k) = binomial(2*k, k)*binomial(n+k, n-k) + binomial(2*n-k, k)*binomial(2*(n-k), n-k). %F A156763 T(n, k) = A063007(n, k) + A063007(n, n-k). %F A156763 Sum_{k=0..n} T(n, k) = 2*A001850(n). - _G. C. Greubel_, Jun 15 2021 %e A156763 Triangle begins as: %e A156763 2; %e A156763 3, 3; %e A156763 7, 12, 7; %e A156763 21, 42, 42, 21; %e A156763 71, 160, 180, 160, 71; %e A156763 253, 660, 770, 770, 660, 253; %e A156763 925, 2814, 3570, 3360, 3570, 2814, 925; %e A156763 3433, 12068, 17388, 15750, 15750, 17388, 12068, 3433; %e A156763 12871, 51552, 85344, 81312, 69300, 81312, 85344, 51552, 12871; %e A156763 48621, 218880, 413820, 438900, 342342, 342342, 438900, 413820, 218880, 48621; %t A156763 T[n_, k_]:= Binomial[n+k, n-k]*Binomial[2*k, k] + Binomial[2*(n-k), n-k]*Binomial[ 2*n-k, k]; %t A156763 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 15 2021 *) %o A156763 (Magma) %o A156763 A063007:= func< n,k | Binomial(n, k)*Binomial(n+k, k) >; %o A156763 A156763:= func< n,k | A063007(n,k) + A063007(n,n-k) >; %o A156763 [A156763(n,k): k in [0..n]. n in [0..12]]; // _G. C. Greubel_, Jun 15 2021 %o A156763 (Sage) %o A156763 def A063007(n, k): return binomial(n+k, n-k)*binomial(2*k, k) %o A156763 def A156763(n, k): return A063007(n,k) + A063007(n,n-k) %o A156763 flatten([[A156763(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 15 2021 %Y A156763 Cf. A001850, A063007. %K A156763 nonn,tabl %O A156763 0,1 %A A156763 _Roger L. Bagula_, Feb 15 2009 %E A156763 Edited by _G. C. Greubel_, Jun 15 2021