This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156764 #7 Jun 21 2021 06:04:57 %S A156764 1,1,1,1,6,1,1,40,40,1,1,300,2000,300,1,1,2520,126000,126000,2520,1,1, %T A156764 23520,9878400,74088000,9878400,23520,1,1,241920,948326400, %U A156764 59744563200,59744563200,948326400,241920,1,1,2721600,109734912000,64524128256000,542002677350400,64524128256000,109734912000,2721600,1 %N A156764 Triangle T(n, k, m) = b(n, m)/(b(k, m)*b(n-k, m)), with T(0, k, m) = 1, b(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} (-1)^(j+i)*(j+1)*(k+1)^i*StirlingS1(j-1, i) ), b(n, 0) = n!, and m = 3, read by rows. %H A156764 G. C. Greubel, <a href="/A156764/b156764.txt">Rows n = 0..30 of the triangle, flattened</a> %F A156764 T(n, k, m) = b(n, m)/(b(k, m)*b(n-k, m)), with T(0, k, m) = 1, b(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} (-1)^(j+i)*(j+1)*(k+1)^i*StirlingS1(j-1, i) ), b(n, 0) = n!, and m = 3. %F A156764 T(n, k, m) = f(n, m)/(f(k, m)*f(n-k, m)), with T(0, k, m) = 1, f(n, k) = (-1)^n*(n + 1)!*BarnesG(n+k+1)/(Gamma(k+1)^n*BarnesG(k+1)), f(n, 0) = n!, and m = 3. - _G. C. Greubel_, Jun 20 2021 %e A156764 Triangle begins as: %e A156764 1; %e A156764 1, 1; %e A156764 1, 6, 1; %e A156764 1, 40, 40, 1; %e A156764 1, 300, 2000, 300, 1; %e A156764 1, 2520, 126000, 126000, 2520, 1; %e A156764 1, 23520, 9878400, 74088000, 9878400, 23520, 1; %e A156764 1, 241920, 948326400, 59744563200, 59744563200, 948326400, 241920, 1; %t A156764 (* First program *) %t A156764 b[n_, k_]:= If[k==0, n!, Product[Sum[(-1)^(i+j)*(j+1)*StirlingS1[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, 1, n}]]; %t A156764 T[n_, k_, m_] = If[n==0, 1, b[n, m]/(b[k, m]*b[n-k, m])]; %t A156764 Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 20 2021 *) %t A156764 (* Second program *) %t A156764 f[n_, k_]:= If[k==0, n!, (-1)^n*(n+1)!*BarnesG[n+k+1]/(Gamma[k+1]^n*BarnesG[k+1])]; %t A156764 T[n_, k_, m_]:= If[n==0, 1, f[n,m]/(f[k,m]*f[n-k,m])]; %t A156764 Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 20 2021 *) %o A156764 (Sage) %o A156764 def f(n,k): return factorial(n) if (k==0) else (-1)^n*factorial(n+1)*product( rising_factorial(k+1, j) for j in (0..n-1) ) %o A156764 def T(n,k,m): return 1 if (n==0) else f(n,m)/(f(k,m)*f(n-k,m)) %o A156764 flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 20 2021 %Y A156764 Cf. A007318 (m=0), A156584 (m=1), this sequence (m=3). %K A156764 nonn,tabl %O A156764 0,5 %A A156764 _Roger L. Bagula_, Feb 15 2009 %E A156764 Edited by _G. C. Greubel_, Jun 20 2021