cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A156776 Number of iterations of x->(sigma(x)+phi(x))/2 until a non-integer is reached when starting with x=n; a(n)=0 if this never happens.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 3, 2, 1, 0, 1, 0, 2, 0, 0, 0, 4, 1, 0, 0, 4, 0, 0, 0, 1, 4, 3, 2, 1, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 7, 1, 1, 0, 0, 0, 8, 3, 2, 0, 0, 0, 0, 0, 8, 7, 1, 0, 0, 0, 0, 7, 6, 0, 1, 0, 0, 0, 4, 6, 5, 0, 0, 1, 0, 0, 5, 6, 5, 4, 3, 0, 9, 0, 0, 7, 6, 5, 4, 0, 1, 9, 1, 0, 5, 0, 9, 3
Offset: 1

Views

Author

M. F. Hasler, Feb 15 2009

Keywords

Comments

In [Guy 1997] the iteration is said to fracture when sigma(x)+phi(x) becomes odd. For n with a(n)=0, A156775(n) gives the number of iterations until a previously seen term is encountered.

Examples

			Let f(x)=(sigma(x)+phi(x))/2. For x=1 we have f(x) = (1+1)/2 = 1, i.e. this is a fixed point and the sequence will never fraction, hence a(1)=0. The same happens for x=2, x=3 and x=5. For x=4 we have f(x) = (7+2)/2 = 9/2, the sequence "fractures" after a(4)=1 iterations. For x=6 we have f(x) = (12+2)/2 = 7, f(7) = (8+6)/2 = 7, a fixed point, so again a(6)=a(7)=0.
		

Crossrefs

Cf. A156775, A065387(n) = A000203(n) + A000010(n).

Programs

  • Mathematica
    f[n_] := If[IntegerQ[n], n, 0]; g[n_] := f[(DivisorSigma[1, n] + EulerPhi[n])/2]; a[n_] := Module[{s = NestWhileList[g, n, UnsameQ, All]}, If[s[[-1]] == 0, Length[s] - 2, 0]]; Array[a, 105] (* Amiram Eldar, Apr 01 2024 *)
  • PARI
    A156776(n,u=[])={ until( denominator( n=(sigma(n)+eulerphi(n))/2)>1 || setsearch(u,n), u=setunion(u,Set(n))); if( denominator(n)>1, #u) }
Showing 1-1 of 1 results.